

Molten Salt Reactor Fuel: experiments and assessments on metal fluoride fluoride phase diagrams

R.J.M. Konings, E. Capelli, O. Beneš

Joint Research Centre

Materials requirements for solvents for the MSR

- ✓ Wide range of solubility for actinides
- ✓ Thermodynamically stable up to high temperatures
- ✓ Stable to radiation (no radiolytic decomposition)
- \checkmark Low vapour pressure at the operating temperature of the reactor
- ✓ Compatible with nickel-based structural materials
- ✓ Compatible with the reprocessing techology

ARE	$NaF - ZrF_4 - UF_4$		
MSRE	⁷ LiF - BeF ₂ - ZrF ₄ - ThF ₄ - UF ₄		
MSBR	⁷ LiF - BeF ₂ - ThF ₄ - UF ₄		
MSFR	⁷ LiF - ThF ₄ - UF ₄		

Only a limited number of metals is suitable from neutronic considerations

Some of the questions to be addressed

- ✓ Do we have a sufficient understanding of the 7 LiF-ThF₄-UF₄ salt ?
- \checkmark Are there alternative solvent components that could be considered ?
- ✓ Can UF₄ be replaced by PuF_3 as fissile source?
- \checkmark How do the physical properties vary in the multicomponent systems ?

Thermochemical approach:

- CALPHAD modelling
- Experimental studies

Relevant physical properties to be considered

- ✓ Melting point
- ✓ Actinide solubility
- ✓ Vapour pressure
- ✓ Heat capacity
- ✓ Density
- ✓ Viscosity
- ✓ Thermal conductivity

Phase diagram optimisation

Quasichemical model with quadruplet approximation (Chartand & Pelton)

 $(A \cdots X) + (B \cdots Y) = (A \cdots Y) + (B \cdots X)$

Purification of ThF₄

Joint Research Centre

The experimental approach for the LiF-ThF₄ phase diagram

Enthalpy of mixing of the LiF-KF system. (\bullet) this study at T = 1121 K. ($\blacktriangle \nabla$) Hong and Kleppa at T = 1176 K and T = 1360 K.

Enthalpy of mixing of the LiF-ThF4 system. (O, \bullet) Data obtained in this study at T = 1121 K and T = 1383 K. Solid line: Calculated enthalpy of mixing from the assessment performed in this work. Dashed line: Calculated enthalpy of mixing from the previous assessment.

1383

1383 K

0.40

1121K

 $X (ThF_4)$

0.60

0.80

0

0.20

1.00

DSC analysis of Li₃ThF₇

European

Thermodynamic assessment of LiF-ThF₄-UF₄-PuF₃ system

• CeF₃ is considered as proxy compound to PuF₃.

Binary sub-systems:

- LiF-ThF₄
- LiF-PuF₃
- ThF_4 -PuF₃
- UF_4 -PuF₃
- LiF-UF₄

1800

1600

1400

1200

1000

800

600

0.2

Γ/K

ThF₄-UF₄

Optimized based on the ThF₄-CeF₃ system

Ternary sub-systems:

- LiF-ThF₄-UF₄
- LiF-ThF₄-PuF₃
- LiF-UF₄-PuF₃
- ThF_4 - UF_4 - PuF_3

Experimental measurements

- Five compositions have been measured using the DSC technique.
- Fixed LiF/ThF₄ ratio and different CeF₃ concentrations:
- LiF-ThF₄-CeF₃ (77.5-18.9-3.6)
- LiF-ThF₄-CeF₃ (77.6-18.9-3.5)
- LiF-ThF₄-CeF₃ (77.7-18.9-3.4)
- LiF-ThF₄-CeF₃ (77.7-19.0-3.3)
- LiF-ThF₄-CeF₃ (77.8-19.0-3.2)

X (LiF)	X (ThF ₄)	X (CeF ₃)	T _{trans} [K]
0.775	0.189	0.036	883.87
0.776	0.189	0.035	869.93
0.777	0.189	0.034	871.65
0.777	0.19	0.033	867.28
0.778	0.19	0.032	889.31

Application of the database: Fuel Optimization

Criteria:

- The fuel composition is optimized based on the **melting point** of the salt mixture.
- A low melting point decreases the risk of freezing and reduces corrosion problem.
- In order to keep sufficient safety margin, the inlet temperature of the reactor must be at least 50 K higher than the melting point.

Fuel constrains:

- The minimum concentration of fissile material is fixed at 5 mol%.
- In order to control the redox potential of the salt (via UF_4/UF_3 ratio), a minimum concentration of UF_4 of 1 mol% is needed.
- Due to non-proliferation issues, the enrichment of UF₄ must not exceed 20%

Fuel Optimization

- Initial MSFR fuel composition: Eutectic composition LiF-ThF₄ (78-22) with addition of 5% PuF₃ and 1 % UF₄ (T=941.5 K)
- Optimized composition having fixed concentration of UF₄ and <u>PuF₃ (T=865.8 K)</u>

Fuel constrain:

Minimum concentration of fissile material: 5% Minimum concentration of UF_4 : 1% Maximum enrichment UF_4 : 20%

PuF₃

Fuel Optimization

- **Initial MSFR fuel composition**: Eutectic composition LiF-ThF₄ (78-22) with addition of 5% PuF_3 and 1 % UF_4 (T=941.5 K)
- **Optimized composition having** ٠ fixed concentration of UF₄ and <u>PuF₃ (T=865.8 K)</u>
- ٠

Fuel constrain:

of UF₄: 1%

UF₄: 20%

Minimum concentration

of fissile material: 5% Minimum concentration

Maximum enrichment

Thermodynamic calculations

٠

• Thermodynamic properties of the identified compositions:

Composition	T melting (K)	T boiling (K)	$P \text{ at } T_{oper}(Pa)$
LiF-ThF ₄ -UF ₄ -PuF ₃ (73.3-20.7-1.0-5.0)	943.9 K	2035 K	$4.62 \cdot 10^{-2}$
LiF-ThF ₄ -UF ₄ -PuF ₃ (78.0-16.0-1.0-5.0)	866.8 K	$2035 \mathrm{K}$	$5.33 \cdot 10^{-3}$
LiF-ThF ₄ -UF ₄ -PuF ₃ (75.3-20.6-1.0-3.1)	819.3 K	2032 K	$7.26 \cdot 10^{-4}$
LiF-ThF ₄ -UF ₄ -PuF ₃ $(77.7-18.0-1.0-3.3)$	856.4 K	2033 K	$3.58 \cdot 10^{-3}$

Influence of partial substitution of ThF₄ with UF₄

Composition	T melting (K)	T boiling (K)	P at $T_{oper}(Pa)$
$LiF-ThF_4-UF_4-PuF_3$ (77.7-18.0-1.0-3.3)	$856.4~\mathrm{K}$	2033 K	$3.58 \cdot 10^{-3}$
$LiF-UF_4-PuF_3$ (77.7-19.0-3.3)	855 K	2007 K	$3.7 \cdot 10^{-3}$

Conclusions

- The combination of assessments and experiments is of key importance to develop the database for molten salt reactor fuel
- We master now the complex handling of these materials for experiments
- Thermochemical modelling has shown to be a useful in teh fuel optimisation
- Work with PuF₃ is the logic next step to improve/verify the database

This work was partially supported by the EVOL project in the FP7 work programme of the European Commission (Grant agreement no. 249696).

