

Development of a Melter Gasifier Model in gPROMS with ChemApp Multicomponent/Multiphase Calculation Routines

WEITER YNG. VEREDL YNG. DER BYRGERKYNSTE DES HANDELS

Orestis Almpanis-Lekkas¹, Bernd Weiss², Walter Wukovits¹

FRILLER

SEPPEREE

N PROBALIT

1 Vienna University of Technology, Institute of Chemical Engineering, 1060 Vienna, Austria 2 Siemens VAI Metals Technologies GmbH, Ironmaking Technology–Smelting/Direct Reduction, Linz, Austria

Outline

Ironmaking

basic mechanism : iron oxide reduction at high temperatures (e.g. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$)

Ironmaking Processes

Corex and Finex advantages \rightarrow lower capital investment and operating cost (15-20%) \rightarrow lower SOx, NOx and dust emission

Melter Gasifier

Software Tools

gPROMS

- developed by Process System Enterprise (PSE)
- equation-oriented modeling & simulation software
- flow-sheeting interface
- sophisticated implementation of Newton solver
- gPROMS capabilities
 - steady-state simulation
 - dynamic simulation
 - parameter estimation
 - model-based experiment design
 - steady-state and dynamic optimisation

GTT - TECHNOLOGIES

ChemApp

- a library of subroutines for the thermodynamic calculations
- uses thermodynamic data files (.cst or .dat) exported from FactSage
- calculation of complex multicomponent, multiphase chemical equilibria and their associated energy balances
- not a standalone program
- in combination with FactSage it provides rich component list in the field of metallurgy

Software Tool Combination

Using ChemApp in gPROMS

Testing the Software Combination

Boudouard Equilibrium

$CO_2 + C \leftrightarrow 2CO$

T. Reed, Free Energy of Formation of Binary Compounds, MIT Press, Cambridge, MA, 1972

Homogenous Water-Gas-Shift Equilibrium

www.thvt.at

 $CO_2 + H_2 \leftrightarrow CO + H_2O$

J.M. Moe, Design of Water-Gas Shift reactors, Chemical Engineering Progress, 58 (3), 33, 1962

Iron Oxide Reduction in Equilibrium

www.thvt.at

 $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2 \qquad Fe_3O_4 + CO \rightarrow 3FeO + CO_2 \qquad FeO + CO \rightarrow Fe + CO_2$ $3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O \qquad Fe_3O_4 + H_2 \rightarrow 3FeO + H_2O \qquad FeO + H_2 \rightarrow Fe + H_2O$

T. Tappeiner, Ganzheiliche Betrachtung des Einsatzes von LRI im Hochofen zur CO2-Minimierung, MIT Press, Leoben, 2011

Melter Gasifier Model Structure

Reactions Considered in Model Zones

Defining Hot Metal / Slag Components

Reactants - Equilib			🕞 Menu - Equilib: Hot Liquids		
ile Edit Table Units DataSe	arch Help		File Units Parameters Help		
D 🗃 + 📰	T(C) P(bar) Energy(J) Mass(g) \	/ol(litre) 👖 📑 🐺		T(C) P(bar) Energy(J) Mass(g) Vol(litre)	III 🖳 🔁 🚿
			Reactants (17)		
1 - 10 11 - 17			(gram) 99856.24 Fe + 4770	IC + 530 Si + 605.26 Mn + 134.62 P + 43.46	S + 204.5665 Fe0 + 14
			•		•
Mass(g)	Species Phase	T(C) P(total)** Stream# Data	Products		
99856.24	Fe		Compound species	Solution species	Custom Solutions
+ 4770			gas C ideal € real 0		0 fixed activities 0 ideal solutions
+ 500			* + pure liquids 14	FSstel-CBCC CBCC_A12	0 activity coefficients
- 1530			× + pure solids 1	FSstel-CUB CUB_A13	Details
* 605.26	Mn		suppress duplicates apply	FSstel-MNS (Mn,Fe)S_Q	Pseudonyms
+ 134.62	P		* - custom selection species: 15	FSstel-M3SI M3SI	apply 🔲 List
+ 43.46	IS I			FSstel-FE1S Fe1Si1	include molar volumes
+ 204 ECCE			- Target	FSstel-FE5S FE5SI3	Total Species (max 1500) 65
1/204.3663			- none -	I-immiscible 1	Total Solutions (max 40) 4
+ 14897.3508	CaO		Estimate T(K): 1000	+-selected 2 species: 50 Select	
+ 4673.117126	MgO		Mass(g): 0	solutions: 4	Default
+ 12415	Si02	▼ 1	Final Conditions		Equilibrium
	,		<a> 	T(C) P(bar) 🔽 Product H(J) 💌 🤅	normal C normal + transitions
		🔲 Initial Conditions		1500 3.6	transitions only
			10 steps 🗖 Table	1 calculation	Calculate >>
Next >>					
istSage 6.3 Compound: 3/15 databases Solution: 2/14 databases / FactSage 6.3 C:\FactSage 6.3 C:\FactSage \Equil 8.DAT //					

Fstel-LIQU (Hot Metal): Al, Al2O, AlO, C, Ca, CaO, CaS, Fe, FeS, Mg, MgO, MgS, Mn, MnO, MnS, O, P, S, Si, SiO, Ti, Ti2O, TiS

Fmisc-FeLQ (Hot Metal): Al, Al2O, AlO, C, Ca, CaO, Fe, Mg, MgO, Mn, MnO, O, P, S, Si, SiO, Ti, Ti2O, TiO

FToxid_SLAGA (Slag): Al2O3, Al2S3, CaO, CaS, Fe2O3, Fe2S3, FeO, FeS, MgO, MgS, Mn2O3, Mn2S3, MnO, MnS, SiO2, SiS2, Ti2O3, TiS3, TiO3, TiS2

FToxid_SLAGC (Slag): Al2O3, Ca3(PO4)2, CaO, Fe2O3, Fe3(PO4)2, FeO, FePO4, K2O, K3PO4, Mg3(PO4)2, MgO, Na2O, Na3(PO4), SiO2, Ti2O3, TiO2

FToxid_SLAG? (Slag): Al2O3, Ca3(PO4)2, CaC, CaCO3, CaO, CaS, CaSO4,Fe2(SO4)3, Fe2O3, Fe3(PO4), FeO, FePO4, FeS, K2CO3, K2O, K2S, K2SO4, K3PO4, Mg3(PO4)2, MgCO3, MgO, MgS, MgSO4, Mn2O3, MnO, MnS, MnSO4, Na2CO3, Na2O, Na2S, Na2SO4, Na3(PO4), SiC, SiO2, Ti2O3, TiC, TiO2

Multizone Melter Gasifier Flowsheet

Simulation Results

Hot Metal

Transformed Simulation Results

Summary

- a communication structure between gPROMS and ChemApp was established
- several equilibrium reactions were tested successfully for the evaluation of the software tool communication
- a multizone model of a melter gasifier was developed with ChemApp calculation routines implemented in the "Raceway & Hearth" zone
- the simulation results were in good accordance with the real plant data for the major components
- deviation was observed in the Si, Mn components that are crucial for the product quality
- further investigation should be made for the determination of the cause of deviation

Thank you for your Attention!

We would like to thank SIEMENS VAI Metals Technologies for the collaboration and the financial support