Reassessing the reassessment of the AI-P System

Klaus Hack & Michael Schick, GTT-Technologies, Herzogenrath, Germany

GTT-Technologies

System AI-P: Ansara et al.

description of Ansara et al. [94Ans] produces *negative* values of c_n (AIP) over the whole T-range.

exp. data: **Cox & Pool** \Rightarrow constant, data for low T Peviak & Sandulova \Rightarrow linear, positive slope, data for low T Itagaki & Yamaguchi \Rightarrow linear, positive slope, limited T-range [94Ans]: L. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson, Calphad 18 (1994) 177

GTT-Technologies

new thermodynamic assessment in: S.-M. Liang, R. Schmid-Fetzer, Calphad **42** (2013) 76-85

authors go back to original experimental data. Only external data used are from SGTE Unary. However, there are no gas data in SGTE Unary !

new thermodynamic description of AIP:

exp. data from Itagaki & Yamaguchi considered best by Liang & Schmid-Fetzer, curve fits data excellently $c_P^{AIP} = 48.4 + 4.7 \cdot 10^{-3} T$

 $-690000 \cdot T^{-2}$

comparison of $c_p(AIP)$

 c_p -curves of Ansara & Schmid-Fetzer show similar shape

 $c_p(AIP)$,Ansara + const., $c_p(AIP)$,SGTE 2011 + const'. fit well exp. data from Itagaki & Yamaguchi

GTT-Technologies

thermodynamic modeling of **liquid phase**: *LIQUID* (AI,P)₁:

$$G_{i}^{0, liq}(T) = G_{i}^{liq}(T) - H_{i}^{SER}$$

= $a + b \cdot T + c \cdot T \ln T + d \cdot T^{2} + e \cdot T^{3} + f \cdot T^{-1} + g \cdot T^{7} + h \cdot T^{-9}$

i = AI,P; *G*-functions according to SGTE [91Din].

Regular liquid interaction using exp-function as proposed by Kaptay to prevent inverse miscibility-gap:

$${}^{0}L_{AI,P}^{liq} = -133862 \cdot e^{-\frac{T}{1000K}}$$

This *T* dependence is not used in any of the SGTE databases and is not permitted in FactSage ⇒ *L*-parameter needs to be refitted !

[91Din]: A.T. Dinsdale, Calphad 15 (1991) 317

GTT-Technologies

thermodynamic modeling of **gas phase**: GAS (AI, AI_2 , P, P_2 , P_4)₁ ideal mixing

 $G_{i}^{0, liq}(T) = G_{i}^{liq}(T) - H_{i}^{SER}$ = $a + b \cdot T + c \cdot T \ln T + d \cdot T^{2} + e \cdot T^{3} + f \cdot T^{-1} + RT \ln(10^{-5} \cdot p)$

 $i = AI, AI_2, P, P_2, P_4;$

G-functions not from SGTE Pure Substance database!

Instead, data were taken from literature: M. Bennewies, E. Milke, *Thermochemical data of elements and compounds, 2nd Ed.,* Wiley-VCH, Weinheim 2002

GTT-Technologies

original phase diagram from publ. Liang & Schmid-Fetzer incl. gas phase for variable total pressure of gas phase (p_{tot})

GTT-Technologies

Temperature [°C] 1500 1400 1300 1200 1100 1000 -2 Experiment: [41] (1968DeM) Fitted Line : [41] (1968DeM) $10^{4}/T = 7.25$ \Rightarrow T = 1106.2°C log₁₀ (P / bar) at $p = 1*10^{-6}$ bar ! -5 -6 Calculated: - [This work] -7 [5] (2012Wu) [9] (2009Tu) -8 7.0 5.5 6.0 6.5 7.5 8.0 (10 000 K) / T issue: $T_{sub} = 1117^{\circ}C$ is not reproduced !

vapour pressure curve calculated with data from Liang & Schmid-

corrigendum has been published by the authors:

- S.-M. Liang, R. Schmid-Fetzer, Calphad **45** (2014) 251-253 reason for the shifted vapour pressure curve: wrong entropy related parameter in $G^{0}(AIP)$
- $G^{0}_{A/P} = -180154 + 293.45 \cdot T 48.40 \cdot T \ln T 2.35 \cdot 10^{-3} \cdot T^{2} + 3.45 \cdot 10^{5} \cdot T^{-1}$ \Rightarrow entropy $S^{298}_{A/P}$ has to be corrected, too:

 $S_{AIP}^{298} = \mathbf{18} J \cdot K^{-1} \cdot mol^{-1}$

this value is significantly lower than all experimental and calculated data from other groups

Adjustment of the phases LIQUID and FCC_A1 as well: ${}^{0}L_{AI,P}^{liq} = -151900 \cdot e^{-\frac{T}{800K}} {}^{0}L_{AI,P}^{fcc} = -25500 \text{ to} -51500$

Al-P phase diagram, calculated by Liang & Schmid-Fetzer after correction, gas phase suppressed

congruent melting temperature $T_{L}(AIP)=2359^{\circ}C$ now considerably lower than before

Corrigendum: Liang & Schmid-Fetzer

GTT-Technologies

AI-P phase diagram with gas phase for $p_{tot} = 10^{-6}$ bar:

 p_{tot} =10⁻⁶ bar; 10⁴/*T*=7.2714*10⁻⁴ K⁻¹ \Rightarrow *T*=1102°C, now in accordance with vapour pressure curve

1. Refit of the ^oL-Parameter:

interaction parameter AI,P for LIQUID: ${}^{0}L_{AI,P}^{liq} = -151900 \cdot e^{-\frac{1}{800K}}$ needs to be refitted

first test was made with series expansion of *exp*-function ⇒ at least 7 parameters needed for appropriate precision

therefore: fitting ${}^{0}L_{Al,P}^{liq}$ with standard Gibbs-Energy function

$$^{0}L_{AI,P}^{liq} = a + b \cdot T + c \cdot T \ln T + d \cdot T^{2} + e \cdot T^{3} + f \cdot T^{-1}$$

All 6 parameters used for high precision of (weighted!) least square fit.

1. Refit of the ^oL-Parameter:

Difference between the original *L*-parameter and the fitted one:

1. Refit of the ^oL-Parameter:

L-parameter \Rightarrow additional heat capacity (Δc_{D}^{liq}) for LIQUID:

Difference increasing for *T*<600 K and *T*>2800K

L-parameter from fit:

$${}^{0}L_{AI,P}^{liq} = -213970.46$$

+ 1033.2727 · T
- 129.64175 · T In T
+ 2.7606318 · 10⁻² · T²
- 9.6312894 · 10⁻⁷ · T³
+ 6065980 · T⁻¹

2. Exchange of the gas phase

if the system AI-P is incorporated into SGTE solution database

- gas phase based on data from Bennewies and Milke cannot be used !
- ⇒ gas phase must be exchanged against description in SGTE Pure Substance Database (SGPS) , vapour pressure curves for sublimation of AIP have to be recalculated to fit the experimental data

2. Exchange of the gas phase recalculation of vapour pressure curves for sublimation of AIP:

standard entropy of AIP:

 $S_{A/P}^{298} = 18.0 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{atoms}^{-1}$ \Rightarrow green line

 $S_{AIP}^{298} = 20.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{atoms}^{-1}$ \Rightarrow blue line

$$S_{AIP}^{298} = 23.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{atoms}^{-1}$$

 $\Rightarrow \text{ red line}$

good correspondence with exp. and calc. data from other authors

3. Adjustment of AI,P interaction in liquid

changed entropy value \Rightarrow adjustment of AI,P interaction in $S_{AIP}^{298} = 23.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{atoms}^{-1}$ liquid phase to fit solubility of P in AI_{liq}

Solubility of P in Al_{liq}:

 w_{P} =3.42*10⁻⁵ (34.2 ppm) (Liang & Schmid-Fetzer)

*w*_P=3.26*10⁻⁵ (32.6 ppm) (present work)

4. Final comparison

binary phase diagram, gas phase deactivated

4. Final comparison

binary phase diagram including gas phase, $p_{tot}=1$ bar

4. Final comparison

Source of data for SGPS:

Fit of experimental data from various authors and extrapolation to standard pressure log*p*=0 by **Cheynet & Chaud**

$$\Rightarrow T_{vap}^{Al} = 2345 \,^{\circ}\text{C}$$

4. Final comparison

binary phase diagram including gas phase, $p_{tot}=10^{-6}$ bar

original image in Liang & Schmid-Fetzer's corrigendum

calculated with data after adaptation (gas phase SGPS)

- ⇒ fit of the interaction parameter AI,P for the liquid phase ⁰L^{liq}_{AI,P} by standard Gibbs polynomial function is sufficiently precise
- ⇒ gas phase in SGTE Pure Substance database (SGPS) based on data from Cheynet & Chaud is consistent with data from Liang & Schmid-Fetzer, allows use of S_{AIP}^{298} =23.6 J·K⁻¹·mol⁻¹·atoms⁻¹, which is in better agreement with exp. data

Thank you for your attention !

