APPLYING THERMO 350M UNDERGROUND A FACTSAGE[™] EQUILIBRIUM STUDY FOR UNDERGROUND COAL GASIFICATION

AFRICARY African Carbon Energy

GTT Workshop, Aachen, Germany, July 2014

Dr. Johan van Dyk, Technology Manager, African Carbon Energy, johan.vandyk@africary.com Prof. Frans Waanders, North-West University Mr. Johan Brand, CEO, African Carbon Energy

- 1. What is Underground Coal Gasification UCG?
- 2. Gasification Technology Overview
- 3. Building a model for a FACTSAGE[™] Equilibrium Simulation
- 4. Mineral matter slag formation in the cavity
- 5. Trace element speciation from 350m underground to surface treatment

What is UCG?

Gasification?

Gasification?

Gasification?

UCG is thus nothing strange!

Gasification Technology Overview

Gasification Technology Overview (cont.)

the science is the same

Building a model for a FACTSAGE[™] Equilibrium Simulation

Building a model for a FACTSAGE[™] Equilibrium Simulation

Building a model for a FACTSAGE[™] Equilibrium Simulation (cont.)

PROXIMATE (AR)	Mass %			
Moisture	4.7			
Fixed carboon	45.3			
Volatile matter	21.4			
Ash	28.6			
	100.0			
ULTIMATE (DAF)				
С	78.9			
Н	4.3			
N	2.1			
S	0.9	Scaling to 100) units of a	ash
0	13.9	_		\geq
	100.1			
ASH OXIDES (%)		Trace Elements	ma/ka	% of ash
SiO ₂	52.7	Sb	1.5	0.00015
Al ₂ O ₃	27.2	Ва	855	0.0855
Fe ₂ O ₃	4.8	Ве	0.1	0.00001
P ₂ O ₅	0.1	Cd	0.5	0.00005
TiO ₂	1.3	Cr	148	0.0148
CaO	6.4	Со	9	0.0009
MgO	1.0	Cu	47	0.0047
K ₂ O	0.5	Pb	91	0.0091
Na ₂ O	0.4	Mn	84	0.0084
SO ₃	4.9	Мо	8	0.0008
	99.3	Hg	0.1	0.00001
		Ni	90	0.009
	East	As	0.5	0.00005
		Sn	15	0.0015
		V	115	0.0115
		Zn	172	0.0172
		CI	150	0.015
		F	159	0.0159

	Property	Mass %				
•	H ₂ O	2.9				
	H_2	0.15				
	CH ₄	4.01				
	СО	0.98				
	CO ₂	7.2				
	N ₂	2.1				
	Tar and oils	5.6				

35 bar cavity pressure

Coal flow of 31 000kg/hr,

58 000kg/hr 35%O2/air mixture and 1 500kg/hr steam

NO recycle of any stream

No contribution from roof and floor in this study – only as individual structure

18 trace elements included (Si-fuming and fouling not included).

Error on the data is in °C, which is ±25°C.

Building a model for a FACTSAGE[™] Equilibrium Simulation (cont.)

Building a model for a FACTSAGE[™] Equilibrium Simulation (cont.)

loor (under burden)

6 – Slag / inorganics in cavity

Mineral matter slag formation in the cavity Input and output of mineral matter

Sample			Halite (Sodium								
naming	Anatase	Dolomite	Chloride)	Kaolinite	Microcline	Muscovite	Plagioclase	Pyrite	Quartz	Rutile	Siderite
						(KAI3Si3O10	((Na,Ca)(Si,A				
	(TiO ₂)	$(CaMg(CO_3)_2)$	(NaCl)	$(Al_2(Si_2O_5)(OH)_4)$	(KAISi ₃ O ₈)	(OH)2)	I)4O8)	(FeS2)	(SiO2)	(TiO2)	(FeCO3)
TUCG09/3											
ROOF/1	0.7	0.7	0.61	17.48	12.47	5.20	16.12	0.47	45.17	1.12	0.00
TUCG09/3 /1											
TUCG09/3 /2	13	0.0	0.00	52 50	5.96	5 17	3 30	2 33	24 78	1 58	0.00
TUCG09/3 /3	4.5	0.0	0.00	52.50	5.90	5.17	5.59	2.33	24.70	1.50	0.00
TUCG09/3 /4											
TUCG09/3											
LOOR/1	1.3	0.9	0.07	37.74	9.08	8.75	1.96	0.39	38.60	1.14	0.11

Mineral matter slag formation in the cavity Mineral transformation in combustion zone

AFRICARY

Mineral matter slag formation in the cavity Mineral transformation in combustion zone

- Viscosity has to be low enough to flow to floor^g
- Mineral matter inherent / homogeneous
- High Si-containing slag, results in high temperature for easy flow

AFRICARY

Mineral matter slag formation in the cavity Crystalline versus slag - transformation

MINERAL MATTER TRANSFORMATION IN A UCG CAVITY C:\FactSage\Equi0.res 25 June 2014 - Dr. JC van CactSage" 100 (\bigcirc) Slag-Aquid 0 80 60 * Mass CaAl, Si, Q., (OH), (s) 40 ow viscosity 20 0 800 900 100 200 300 400 500 600 700 1000 1100 1200 1300 1400 1500 1600 0 Temperature (°C)

Mineral matter slag formation in the cavity Crystalline versus slag - transformation

Mineral matter slag formation in the cavity Roof

AFRICARY

Mineral matter slag formation in the cavity Floor

AFRICARY

Mineral matter slag formation in the cavity Coal versus roof and floor

Trace element speciation – from 350m underground to surface treatment

Trace element speciation – from 350m underground to surface treatment

mg/hr	Si	AI	Fe	Р	Ti	Ca	Mg	К	Na
1 - Stream 2101 RG OUT 250	9.68791E-33	2.3318E-30	3.9809E-08	3.7464E-25	3.3692E-39	9.3736E-23	3.0269E-17	1.0296E-12	1.7492E-14
2 - GL and tar at 135	0	-6.2888E-59	2.2185E-06	-2.1575E-53	0	-2.7939E-44	-2.5694E-36	-1.7283E-28	-4.397E-30
3 - Dry RG at 80	8.25733E-55	9.7359E-49	3.1277E-17	3.1836E-45	4.4996E-62	6.3548E-36	1.857E-29	7.8707E-24	1.1467E-25
4 - RG underground cavity at 300	6.93976E-28	2.1161E-26	2.255E-06	1.323E-20	3.8841E-34	6.37E-20	8.1869E-15	1.8524E-10	4.078E-12
5 - Dry RG at 50	0	6.2888E-59	2.2629E-23	2.1575E-53	0	2.7939E-44	2.5694E-36	1.7283E-28	4.397E-30
In cavity or ash matrix	7636513573	4462730338	1040752973	13529289.9	241537607	1417956595	192551273	133820216	68993368.7

Volatility of trace components

In summary

- The behaviour, and importantly the mineral matter composition of a coal source, directly relates to the ash fusion temperature (AFT) profile, trace element speciation and mineral transformations of the coal source.
- Factsage[™] can assist to assess coal ash fusibility, leachability and melting characteristics and it is furthermore used to predict the melting behaviour of the coal ash in coal conversion processes.
- It has been demonstrated and published before that the ash flow temperature can be correlated with equilibrium calculations, and that such equilibrium calculations provide useful information regarding the phase transitions that take place in a UCG cavity.
- Previous studies have confirmed that the slag-liquid flow temperature simulations for coal and individual mineral types compared favourably with the actual measured ash flow temperature and are within the experimental error of an AFT analysis (±30°C).

References

- 1. Alpern, B., Nahuys, J., Martinez, L., Mineral matter in ash and non-washable coals Its influence on chemical properties, In Symposium on Gondwana Coals, Lisbon proceedings and papers, vol. 70 1984, p299-317
- 2. Comun. Serv. Geol. Portugal, 1984, t. 70, fasc. 2, pp. 299-317, 1988.
- 3. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Manfoud, R. B., Melancon, J., Pelton, A.D. and Peterson, S., FactSage Thermochemical Software and Databases, GTT-Technologies, Germany, Calphad, 2002, 26, p. 189-228.
- 4. Collet, A.G., Matching gasifiers to coal, IEA Clean Coal Centre, 2002, p.1-64.
- 5. Gray, V.R., Prediction of ash fusion temperature from ash composition for some New Zealand coals, Fuel 66 (1987), p.1230-1239.
- 6. Higman, C. and Van der Burgt, M., Gasification, Gulf Professional Publishing, Amsterdam, 2007.
- 7. Holt, N. Gasification technology status December 2006, Electric Power Research Institute, Palo Alto, 2006
- 8. IEA Clean Coal Centre, Coal quality assessment the validity of empirical tests, September 2002.
- 9. Jak, E. and Hayes, P.C., Applications of the new F*A*C*T database to the prediction of melting behaviour of coal mineral matter, Coorperative Research Centre for Black Coal Utilisation, Pyrometallurgy Research Group, The University of Queensland, Australia, p.1-9, 2002.
- 10. Jak, E., Prediction of coal ash fusion temperatures with the FACT thermodynamic computor package, Fuel, 81, 2002, p. 1655-1668.
- 11. Keyser, M.J., Personal communication, Sasol Technology, martin.keyser@sasol.com, 2006.
- 12. Keyser, M.J., van Dyk, J.C., 17th International Pittsburgh Coal Conference, 2000, Pittsburgh, USA, Full Scale Sasol/Lurgi Fixed Bed Test Gasifier Project: Experimental Design and Test Results.
- 13. Keyser, M.J., van Dyk, J.C., Coetzer, R.L.C., Wagner, N.J., 8th Coal Science and Technology Conference of the Fossil Fuel Foundation of Africa, South Africa, 15-17 October 2002, Full Scale Sasol/Lurgi Fixed Bed Test Gasifier Project: Impact of particle size distribution, destoning and gasifier operating conditions on sulphur production.
- 14. MICROBEAM TECHNOLOGIES, INC., www.microbeam.com, 2003.
- 15. Ross, D.P., Kosminski, A. and Agnew, J.B., Reactions between sodium and silicon minerals during gasification of low-rank coal, 12th International Conference on Coal Science, 2003, Australia, p. 1-9.
- 16. Seggiani, M., Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes, Fuel 78 1999, p. 1121-1125.
- 17. Slegeir, W.A., Singletary, J.H. and Kohut, J.F., Application of a microcomputor to the determination of coal ash fusibility characteristics, Journal of Coal Quality, 1988, Volume 7, Number 2, p. 48-54.
- 18. Van Dyk, J.C., Keyser, M.J., van Zyl, J.W., Suitability of feedstocks for the Sasol-Lurgi Fixed Bed Dry Bottom Gasification Process, GTC Conference, San Francisco, USA, October 2001.
- 19. Van Dyk, J.C., Melzer, S. and Sobiecki, A., Mineral matter transformations during Sasol-Lurgi fixed bed dry bottom gasification utilization of HT-XRD and FactSage modelling, Minerals Engineering 19 (2006), 1126-1135.
- 20. Van Dyk, J.C., PhD Thesis Manipulation of gasification coal feed in order to increase the ash fusion temperature of the coal to operate the gasifiers at higher temperatures, North West University, 2006.
- 21. Van Dyk, J.C., Waanders, F.B. and van Heerden, J.H.P. Quantification of oxygen capture in mineral matter during gasification, Fuel 87, 2008, p2735-2744.