Further progress in modelling slag viscosities on the basis of the HotVeGas Oxide database

03.07.2014 Guixuan Wu

GTT Annual Users' Meeting 2014

Outline

- Background and motivation
- Challenging viscosity behaviors
- Viscosity model development
- Results
- Application of 3-D viscosity surface
- Conclusions and outlook

Background and motivation

The challenging viscosity behaviors

The viscosity model **Classical model:** Comp. Viscosity Temp. The story of current model : Comp. Associate Viscosity Temp. species

• For FeO/Fe₂O₃ containing systems, partial pressure of oxygen is also taken into account in the current model.

Pure oxides

Network Dimensionality:

2D: B₂O₃

3D: SiO₂

The results of the current viscosity model PULICH

 $\ln \eta = (\sum X_i \cdot \ln \eta_i)$ where: $\ln \eta_i = A_i + B_i / T$ i: associate species SiO₂-Al₂O₃-CaO Ostroukhov M., 1939 T=1600°C Rait J.R., 1938 X_{SiO2}=0.67 Toplis M.J., 2004 Original Arrhenius model **Below liquidus**

Amphoteric effect

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $X_{Al_2O_3/(Al_2O_3+CaO)}, mol\%$

0.0

0.0

1.0

The idea of current viscosity model II

Larger structural units

The results of the current viscosity model FULLICH

The distribution of structural units

Influence of the T and P_{0_2}

03.07.2014

GTT Annual Users' Meeting 2014

The modified Urbain model $\eta = ATexp(B/RT),$ $ln(\eta) = ln(A) + ln(T) + B/RT,$ $ln(\eta) = a_0 + a_1y + a_2y^2 + a_3x + a_4xy + a_5xy^2 + a_6x^2 + a_7x^2y$ $+ a_8x^2y^2 + a_9x^3 + a_{10}x^3y + a_{11}x^3y^2,$

where: x and y are the normalized mole fractions $m_s/(m_s + m_a + m_c + m_f)$ and $(m_c + m_f)/(m_a + m_c + m_f)$, respectively.

s: SiO₂, a: Al₂O₃, c: CaO, f: FeO

Source: Hurst, H. J.; Novak, F.; Patterson, J. H., Fuel 1999, 78, 1831-1840.

Parameters for the modified Urbain model

Model 1	Urbain model [4]		Slag	Slag Ash Model Normalised composition					
Model 2	Synthetic slag SAC model [3]					~:~			
Model 3	Coal ash slag model f	for <2.5% FeO				S_1O_2	AI_2O_3	CaO	FeO
Model 4	Synthetic slag SACF model for 5% FeO [5]		1	1	3	62.7	11.6	25.6	0.1
Model 5	Coal ash slag SACF model for 2.5–5% FeO Coal ash slag SACF model for 5–7.5% FeO Synthetic slag SACF model for 10% FeO [5]		2	2	3	50.1	23.6	26.1	0.1
Model 6			3	2	3	52.1	23.0	20.1	0.2
Model 7			4	1	3	71.1	13.2	15.3	0.2
Model 8 Coal ash slag SACF model for 7.5–10% FeO		5	3	3	61.7	9.1	28.7	0.5	
				3	3	55.9	9.8	33.8	0.5
			7	1	3	71.0	13.3	14.8	0.9
Coeff	Model 3, $< 2.5 \text{ wt\% FeO}$		8	4	3	40.8	20.1	38.1	1.0
coen.			9	5	3	48.1	25.3	25.4	1.2
	1450°C	1500°C	10	5	3	51.6	27.9	19.2	1.3
			11	5	3	54.7	28.6	15.3	1.4
a_0	-7.402775E + 03	-7.817323E + 03	12	6	3	46.4	18.2	33.8	1.5
a_1	2.133864E + 04	2.241419E + 04	13	7	3	39.3	26.9	32.3	1.6
a_2	-1.539507E + 04	-1.607130E + 04	14	6	3	49.4	26.9	29.4	1.7
a_3	4.133813E + 04	4.361551E + 04	15	8	3	49.2	22.6	26.4	1.8
a_4	-1.190597E + 06	-1.248887E + 05	16	7	3	43.8	29.7	24.7	1.8
a_5	8.582252E + 04	8.941590E + 04	17	7	3	50.3	33.0	14.7	1.9
a_6	-7.623803E + 04	-8.039671E + 04	18	9	3	40.9	30.7	26.5	1.9
a_7	2.193927E + 04	2.298908E + 05	19	6	3	53.0	21.0	24.1	1.9
a_8	-1.580125E + 04	-1.643712E + 05	20	10	3	47.5	28.1	22.	2.0
a_9	4.651861E + 04	4.903991E + 04	21	11	3	57.0	17.0	23.9	2.1
a_{10}	-1.336966E + 04	-1.399871E + 05	22	12	3	65.2	14.0	19.3	1.55
a_{11}	9.619190E + 04	9.994213E + 04	23	13	3	60.8	17.9	19.0	2.2
s^2	0.44	0.51	24	14	3	55.2	17.7	24.6	2.5

Source: Hurst, H. J.; Novak, F.; Patterson, J. H., Fuel **1999**, 78, 1831-1840.

Some results

Source: Hurst, H. J.; Novak, F.; Patterson, J. H., Fuel 1999, 78, 1831-1840.

Associate species employed for $FeO/Fe_2O_3^{OV}$

Compounds	Associate species	Structural units
FeO	Fe ₂ O ₂	FeO
Fe ₂ O ₃	Fe ₂ O ₃	Fe O _{1.5}
FeAl₂O₄	$\frac{2}{3}$ ·FeAl ₂ O ₄	Fe _{0.5} AIO ₂
CaFe₂O₄	$\frac{2}{3}$ ·CaFe ₂ O ₄	$Ca_{0.5}$ Fe O ₂
MgFe₂O₄	$\frac{2}{3}$ ·MgFe ₂ O ₄	Mg _{0.5} Fe O ₂
Fe₂SiO₄	$\frac{2}{3}$ ·Fe ₂ SiO ₄	Fe ₂ SiO ₄
NaFeO ₂	NaFeO ₂	Na Fe O ₂
Na ₂ FeO ₂	$\frac{2}{3}$ ·Na ₂ FeO ₂	Na ₂ FeO ₂
KFeO ₂	KFeO ₂	KFeO ₂
FeSi ₂ MgO ₆	¹ / ₂ ⋅FeSi ₂ MgO ₆	$Fe_{0.5}$ Si Mg_{0.5}O ₃
FeSi₂CaO ₆	¹ / ₂ ⋅FeSi ₂ CaO ₆	Fe _{0.5} Si Ca _{0.5} O ₃
FeSiO ₃	FeSiO ₃	Fe Si O ₃
Fe ₂ Si ₅ Al ₄ O ₁₈	$\frac{2}{11}$ · Fe ₂ Si ₅ Al ₄ O ₁₈	Fe _{0.4} Si Al _{0.8} O _{3.6}
FeSiNa₂O₄	$\frac{1}{2}$ FeSiNa ₂ O ₄	Fe Si Na ₂ O ₄

03.07.2014

First result

The source of the experimental data: Hurst et al., Fuel 1999 & 2000

GTT Annual Users' Meeting 2014

First result

The source of the experimental data: Hurst et al., Fuel 1999 & 2000

GTT Annual Users' Meeting 2014

First result (known P₀₂)

GTT Annual Users' Meeting 2014

First result (unknown P₀₂)

The source of the experimental data: SciGlass database

Estimated P₀₂

Dealing with unclear atmospheres as follows:

Modified optimization process

Viscosity surface I

Viscosity surface II

Viscosity surface III

Conclusions:

- The current structurally-based viscosity model is capable of predicting the viscosity for the fully liquid system SiO₂-Al₂O₃-CaO-MgO-Na₂O-K₂O-FeO-Fe₂O₃ and its subsystems;
- The partial pressure of oxygen is taken into account for the viscosity modelling of FeO/Fe₂O₃ containing system.

Outlook:

- Further analyzing available experimental data for FeO/Fe₂O₃ containing systems;
- Further optimizing the model parameters of the FeO/Fe₂O₃ containing systems;
- Considering the potential polymerization of Fe³⁺-based quasitetrahedron structure units;
- Extending the current viscosity model from the fully liquid to the mixture of liquid and solid.

Thank you very much for your attention!