GTT Users Meeting, Herzogenrath 03.07.2014

Selected fields of application for FactSage-Modelling in nonferrous metallurgy

David Friedmann, Frank Kaußen, Kilian Gisbertz, Prof. Bernd Friedrich

IME Process Metallurgy and Metal Recycling, RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich

IME – Research in nonferrous metallurgy

General

Institute of RWTH Aachen University 30 Researchers, 30 technical/administrative staff 30 BSc- and 20 MSc-thesis per year > 500 publications since 1999

Recycling-Metallurgy

Process development and Scale Up

Pyro- and Hydrometallurgy

Minimization of emissions, waste material recycling

Process technology for metallic materials

Vacuum metallurgy Purification of metals and alloys Nano powders

Services and consulting

Goals:

- Simulation of ocean nodule smelting
- Approximation of the liquidus temperature of the molten slag
- Influence of SiO₂ content on the liquidus temperature
- Simulation of the carbothermic metal reduction from liquid slag
 - → Can Mn and Fe content be separated from metal values (Ni, Cu, Co, Mo, V)?

5 cm

Nodule occurrence with current research licenses

Model simplifications:

- All metals in ocean nodules occur as simple oxides (see table below)
- Oxides of P, Ba and Sr are not considered, since the slag solution database (FToxid) does not contain data
- 15 component system, elements < 500 ppm are not considered
- Influence of the atmosphere during smelting is omitted

Reality:

- Metals occur as complex oxidic, hydroxidic, carbonate or phosphate minerals (e.g. Na₄Mn₁₄O₂₇•21H₂O)
- Approximately 0.7 wt.-% P+Ba+Sr in ocean nodules
- Nodules contain nearly all elements of the periodic table
- Smelting in an open electric arc furnace

Metal oxides considered in model [wt.-%] of 100%

Average of 206 BGR samples \rightarrow heavy fluctuation in composition

MnO	SiO ₂	FeO	AI_2O_3	MgO	Na ₂ O	CaO	NiO	CuO	K ₂ O	TiO ₂	CoO	ZnO	V ₂ O ₅	MoO ₃
51.2	16.1	10.1	5.44	4.05	3.47	2.88	2.19	1.86	1.50	0.54	0.27	0.24	0.13	0.12

Databases:

• FactPS

•

- FToxid (liquid slag and solid solutions)
- SGTE (liquid alloy)

AACHEN

KNOW-HOW CENTRE

No SiO₂ addition $MnO/SiO_2 = 3.2$

→ T = 1650 °C

e™

(-~~0 III allo)

Equilib model of metal reduction High SiO₂ addition \rightarrow 351.54 g/kg SiO₂ MnO/SiO₂ = 1

\rightarrow T = 140(Results:

- SiO₂ addition decreases liquidus temperature significantly
- Metal reduction may be carried out at lower temperature
- Mn reduction becomes thermodynamically adverse
- Fe reduction cannot be avoided thermodynamically

Key points from model for experiments:

- \rightarrow MnO/SiO₂ ratio should be between 1.5 and 1
- → Control of reduction is critical to attain low Mn-content in alloy
- → Complete separation of Mn in slag is improbable because of the reduction of Mn₂O₃
- Trade-off between undesired Fe reduction and valuable metal recovery is necessary

Percentage of stoichiometric C addition [%]

Comparison of model and experiments:

No silica addition ~1650 °C

Phase distribution comparison

Study II: Recovery of valuable metals AI and Fe from red mud

Study II: Comparison of FactSage and experiments

Maximum recovery in FactSage at 64% for CaO/SiO₂ of 4

Experiments verify the trend of significantly higher recoveries:

Lime addition

Problem:

- FactSage -> Equilibrium calculation
- Reality
 - \implies existence of other phases (AI(OH)₃)
 - ⇒ 250°C slow kinetics for equilibrium
- ➔ Delayed recovery increase
- and plateau at CaO/SiO₂ ~1.5 and higher recoveries through readily soluble Al(OH)₃

Future approach:

Preheating of the experimental mixture at 900°C to reach equilibrium and subsequent leaching

Study II: New approach: Si-separation in electric arc furnace (EAF)

- Recovery of iron and silicon through carbothermic reduction
- Enrichment of (soluble) Al in slag
- \rightarrow Avoiding the necessity for massive landfills for Red Mud (~ 100M t per year)

Study II: Comparison of FactSage and experiments (Fe Reduction)

"Selective" iron reduction at 1600°C

Slight hyperstoichimetric carbon addition (9 instead of 7 g/100g RM and CaO addition of 3.5 g/100g RM)

Metal [wt%]	Fe	С	Si	Ti	AI	
FactSage	90,7	2,7	4,4	0,2	0,002	
Experiment	93,7	4,4	0,04	0,2	0,000	
Slag [wt%]	Al_2O_3	SiO ₂	CaO	Na₂O	TiO ₂	Fe ₂ O ₃
FactSage	49,2	19,4	13,2	8,3	11,7	0,02
Experiment	47,8	22,7	11,5	9,4	13,6	0,7

- Si-equilibrium not reached
 - Slag composition is in very good accordance with calculated model

Study III: Non-ferrous(nf) metal recycling from MSWI bottom ash

- 1. Separation of nf-metals by conventional MSWI bottom ash treatment
- 2. Sensor-based Sorting of nfmetal concentrates for the production of light and heavy metal fractions
- 3. Development of metallurgical evaluation methods, e.g.

Study III: Non-ferrous(nf) metal recycling from MSWI bottom ash

Light fraction 10-40 mm conditioned

Heavy fraction 10-40 mm conditioned

Study III: Metallurgical evaluation of nf-metal fractions

Treatment of light fraction through salt refining is relatively basic

 \rightarrow High AI containing alloy (> 90 wt.-%)

Treatment of heavy fraction much more challenging

- → High AI, Si , Fe content which is undesired in metal
- \rightarrow Zn distillation as first step

Average Composition of the waste's heavy fraction [wt.-%]

Cu	Zn	AI	Pb	Fe
37.7 ± 4	19.6 ± 5	25.7 ± 2	0.85 ± 0.5	8.33 ± 5
Si	Ni	Cr	Mn	
Si 1.48 ± 0.2	Ni 1.8 ± 1.5	Cr 2.05 ± 1.7	Mn 0.38 ± 0.2	

Study III: Thermochemical modelling with FactSage

For the recycling of heavy metal fraction:

- Evaluation of vapour pressure for Zn and Zn-containing alloys with complex composition
- Calculation of binary phase diagrams for the identification of possible (intermetallic) product phases in the Cu-rich prealloy
- Selective oxidation of ignoble accompanying elements in dezinced metal by different oxidation agents

Study III: Vapour pressure of alloys

 Zinc partial pressure changes with the activity of zinc, which is higher for Cu-Zn-AI and Cu-Zn-AI-Fe than for Cu-Zn systems (SGPS-SGTE)

Study III: Binary edges of de-zinced heavy metal

 Binary edges indicate, that intermetallics are predominant for AI-Cu and AI-Fe system, while demixing is typical for Cu-Fe system (FScopp-SGTE)

Ee in Gew

AACHEN

W-HOW CEN.

Study III: Activity-fitted Ellingham-diagrams for oxidative treatment

- 1. Calculation of activities for the composition in de-zinced heavy metal in equilibrium at 1300 °C
- 2. Compilation of activity-fitted Ellingham-diagrams for the estimation of the selectivity of oxidative treatment

Summary and outlook

FactSage Modelling is very helpful in our research:

- Theoretical support of experimental results
- Feasibility checking of an idea without or in addition to experiments
- Quick verification of a new approaches / ideas

Future / additional research involving FactSage:

- Modelling of aluminothermic metal production
- Simulation of different salt compositions for aluminum recycling
- Liquid salt electrolysis of REE

"Need to have / nice to have" additions to FactSage:

- Rare Earth Element databases:
 - slags with REE-oxides \rightarrow further addition to FToxid
 - other chemical REE-species (e.g. carbides)
 - additional data for phase diagrams
- Database involving the combustion of organic materials (simulation of pyrolysis of different wastes)
- System Ti-AI-O in contact with different slag systems (e.g. CaF₂-CaO-Ca) for TiAI deoxidation in ESR

GTT Users Meeting, Herzogenrath, 03.07.2014

Thank you for your attention!

IME Process Metallurgy and Metal Recycling, RWTH Aachen University Prof. Dr.-Ing. Dr. h.c. Bernd Friedrich