

Thermodynamic Modeling and Experiments in Systems Evaluated in the WeNDeLIB priority program for Li-ion batteries

Dajian Li, Alexandra Reif, Siegfried Fürtauer, Hans Flandorfer, Damian Cupid, Hans J. Seifert,

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Lithium ion cell; Intercalation mechanisms

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Full lithium ion cell discharge reaction E_{i} $Li_{x}AN + CA \xrightarrow{\text{discharge}} AN + Li_{x}CA$ Free energy of the full reaction is: $\Delta G(x,T) = -n \cdot F \cdot E_0(x,T)$ Free energy of the full reaction can be written: $\Delta G(x,T) = \Delta H(x,T) - T\Delta S(x,T)$ **Neglecting T-dependence:** ∂E $\Delta G_0(x,T) = \Delta H(x) - T\Delta S(x)$ **Combining equations:**

(x,T)	Open circuit voltage
n	Charge number (n=1 for Li ⁺)
F	Faraday constant
ΔH ΔS	Heat and entropy of reaction
$\frac{\partial (x,T)}{\partial T}$	Temperature slope of <i>E₀(x,T)</i>

$$\Delta S(x) = F\left(\frac{\partial E_0(x,T)}{\partial T}\Big|_x\right) \Delta H(x) = F\left(-E_0(x,T) + T\frac{\partial E_0(x,T)}{\partial T}\Big|_x\right)$$

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Focus Themes of WeNDeLIB

- Thermodynamics and phase diagrams govern battery performance
- Thermal management of batteries
- Battery safety (thermal runaway)
- Structural stabilities of active materials
- Synthesis of active materials

 $\begin{array}{c} 4,2\\ 4,0\\ 3,8\\ 3,6\\ 3,4\\ 3,2\\ 3,0\\ 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ \hline entladekapazität [Ah] \end{array}$

Entladecharakteristik ICS 12/203/245 Laden: CC/CV; 4,2 V; 1 C (40 A); 0,05 C (2 A) Abschaltstrom bei RT Entladen: CC; 3,0 V; 1 C ~ 5 C bei RT

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Commercial powder from MTI

Sol-gel prepared samples

- Samples prepared using sol-gel synthesis
- The Li-rich boundary of the Li_{1+x}Mn_{2-x}O₄ phase determined using thermogravimetric analysis

High Temperature Oxide Solution Calorimetry

- Drop Solution Calorimeter (Alexsys 1000, Setaram)
 - Twin-Calvet-Type
 - Sodium molybdate (3Na₂O·4MoO₃) solvent
 - Solution calorimetry performed at 700°C

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Li_{1.2}Mn_{1.8}O₄: Drop Solution Measurements

All Measurements (12): ΔH_{ds} =260.37 \pm 1.77 kJ/mol

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Measured Enthalpy of Drop Solution

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Enthalpy of Formation from the Oxides

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Differential Scanning Calorimetery

Netzsch 404 F 1

Heating and cooling system

Netzsch 204C

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Measured Specific Heat Capacity of Li₂MnO₃

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Modeling of LiMnO₂ and LiMn₂O₄ as stoichiometric phases

 ${}^{0}G_{m}^{LiMnO_{2}} = 0.5 \cdot {}^{0}G_{m}^{Li_{2}O} + 0.5 \cdot {}^{0}G_{m}^{Mn_{2}O_{3}} + A + B \cdot T$

$${}^{0}G_{m}^{LiMn_{2}O_{4}} = 0.5 \cdot {}^{0}G_{m}^{Li_{2}O} + 0.5 \cdot {}^{0}G_{m}^{Mn_{2}O_{3}} + 0.5 \cdot {}^{0}G_{m}^{MnO_{2}} + A + B \cdot T$$

A: Enthalpy of Formation from the oxides. Determined by solution calorimetry

Calculation of cell potentials

$$V = -\frac{\mu_{Li}^{Cathode} - \mu_{Li}^{Anode}}{F} = -\frac{\mu_{Li}^{Cathode}}{F}$$

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Calculated Specific Heat Capacity of Li₂MnO₃

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Calculated Isothermal Section at 400°C

 ${}^{0}G_{m}^{LiMnO_{2}}$ and ${}^{0}G_{m}^{LiMn_{2}O_{4}}$ at 680, 740 and 800 K taken from Rog et al. [1] $\Delta H_{f,ox}^{LiMn_{2}O_{4}}$ taken from Wang and Navrotsky [2] $\Delta H_{f,ox}^{LiMnO_{2}}$ taken from Wang and Navrotsky [3] [1] Rog et al. J. Chem. Thermodynamics., 364, (2003) 473-476 [2] Wang and Navrotsky, J. Solid State Chem. 178 (2005) 1182-1189 [3] Wang and Navrotsky, J. Solid State Chem. 178 (2005) 1230-1240

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Calculated Coulometric Titration Curve at 400°C

Calculated phase diagram at 400°C

Calculated coulometric titration curve at 400°C

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Calculated Coulometric Titration Curve at R. T.

Calculated phase diagram at 25°C

Calculated coulometric titration curve at 25°C

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Li-Sn: Collaboration Map

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Li-Sn: Calculated Phase Diagram

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Heat Capacity of Li-Sn Intermetallics

 ${}^{0}G_{\text{Li}_{5}\text{Sn}_{2}}^{\text{Li}_{5}\text{Sn}_{2}} - 0.714H_{\text{Li}}^{\text{SER}} - 0.286H_{\text{Sn}}^{\text{SER}} = -50890 + 165.654838T - 29T\ln T$

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Li-Sn: Thermochemical Data

Li-Sn: Coulometric Titration Curve

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Cu-Sn: Order-Disorder Transformation

3,07

composition [at % Sn]

HT-XRD, 973 K

T.B. Massalski, H. Okamoto, Binary alloy phase diagrams, ASM International, Materials Park, Ohio, 2001.

S. Fürtauer et al., Intermetallics 34 (2013) 142-147.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Cu-Sn: New Experimental Phase Diagram

S. Fürtauer et al., Intermetallics 34 (2013) 142-147.

S. Fürtauer et al., Intermetallics 34 (2013) 142-147.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Cu-Sn: Calculated Phase Diagram

A2/D0₃ model: $(Cu,Sn)_{0.25}^{I}(Cu,Sn)_{0.25}^{II}(Cu,Sn)_{0.25}^{III}(Cu,Sn)_{0.25}^{IV}$

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Cu-Li: Motivation

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Cu-Li: Motivation

W. Gasior et al., CALPHAD 33 (2009) 215

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Cu-Li: Calculated Phase Diagram

Quench experiments (973 K, 14 days) on $Cu_{70}Li_{30}$ and $Cu_{25}Li_{75}$ performed (University of Vienna), Cu_2Li_3 phase not detected

Cu-Li: Enthalpy of Mixing and EMF Data

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Cu-Li-Sn: Extrapolation of Enthalpies of Mixing

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

S. Fürtauer et al., J. Chem. Thermodyn., 61 (2013), 105.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

S. Fürtauer et al., J. Chem. Thermodyn., 61 (2013), 105.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

S. Fürtauer et al., J. Chem. Thermodyn., 61 (2013), 105.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

S. Fürtauer et al., J. Chem. Thermodyn., 61 (2013), 105.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

S. Fürtauer et al., J. Chem. Thermodyn., 61 (2013), 105.

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

Cu-Li-Sn: Isoenthalpy Curves of the Liquid

No ternary interaction parameter used!

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Lots of work still needs to be done!

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Cu-Li-Sn: Extrapolated Enthalpies of Mixing

No ternary interaction parameter used!

Thermodynamic Modeling and Experiments in Systems Evaluated in the WENDELIB priority program for Li-ion batteries KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association