Simulating mushy zone resolidification for multiphase and multicomponent alloys using ChemApp

A. Löffler, M. Rettenmayr
Friedrich-Schiller-University Jena
Otto Schott Institute for Materials Research
Metallic Materials Department

GTT User Meeting 2014
mushy zone resolidification

\[\frac{dT}{dx} \rightarrow \frac{d\xi_{Li}}{dx} \]

experimental set-up

\[T_L (c_0) \]

\[700^\circ C \]

\[T_S (c_0) \]

\[500^\circ C \]

phase diagram
binary systems

- measured concentration
- measured local temperature
- corresponding solidus concentration

other effects documented in literature
- TGZM
- LFM
- thermo migration
- coarsening
- ...

analytical model by Combeau et al.
- resolidification in binary alloys with single solid phase forming in mushy zone
multiphase resolidification

Al-60% Cu
→ quenched after 2 min holding time
model

\[\frac{\partial c_{\text{tot}}}{\partial t} = \frac{\partial}{\partial x} \left(D_L f_L \frac{\partial c_L}{\partial x} \right) \]

- constant temperature gradient assumed
- \(c_0, T, D_L \) known
- calculate liquidus concentration \((c_L) \), liquid fraction \((f_L) \), phase fractions and concentrations in solidified phases using \textbf{ChemApp}
- solve diffusion equation using Finite Differences Method to obtain new \(c_{\text{tot}} \)
results: Al-3.8 % Cu

holding time: 10 min
temperature gradient: 10 K/mm
multiphase case: Al-60 wt.% Cu

→ solute flux $j^+ \neq j^-$
→ solute concentration at T_p changes
results: Al-60 wt.% Cu

2 min, 55 K/mm
Al-60 wt.% Cu – liquid fraction

380 min

2 min
10 min
20 min
30 min
180 min

liquid fraction [g/g]

600 620 640 660 680

temperature [°C]
results: Al-60 wt.% Cu - concentrations

Temperature gradient: 55 K/mm

- Concentration Al [g/g]
- Distance from solidus [mm]
- 2 min
- 30 min
- 180 min
results: Al-5 wt.% Si- 1 wt.% Mg, 30 K/mm
conclusions

➢ a model for mushy zone resolidification was presented:
 – temperature dependent local equilibria calculated using thermodynamic software package ChemApp
 – diffusion equation solved numerically

➢ multiphase and multicomponent alloys

➢ verification via temperature gradient annealing experiments in Al-Cu and Al-Mg-Si alloys