Addition of MeS and MnO_x to the GTT Oxide database

GTT-Technologies

GTT-Workshop, 3-5. Juli 2013, Herzogenrath

Klaus Hack, Tatjana Jantzen

Contents of presentation

- Introduction
- Addition of MeS
- Addition of MnO_x
- Conclusions
- Future developments

GTT oxide database

Sulphur in oxide glasses

GTT-Technologies

used for high refractory index materials.

sulphate can be used as refining agent, as sulphide gives amber colour.

Addition of MeS

- Introduction
- The Me-S phase diagrams (Me= Ca, Fe, Mg, Mn)
- The Me₁O-Me₂S systems
- The Me₁S-Me₂S phase diagram
- The ternary Fe-O-S system
- The ternary $Al_2O_3 CaO CaS$ system
- The ternary CaO CaS SiO₂ system
- The ternary CaS FeS MgS system

Modelling of binary S-containing phases

System	Phase	Description	Used data
Ca-S	Liquid	(Ca, <mark>CaS</mark> , S)	proposed by GTT
Fe-S	Liquid	(Fe, <mark>FeS</mark> , S)	Fe-FeS - Steel database, FeS-S - optimized by GTT
Mg-S	Liquid	(Mg, <mark>MgS</mark> , S)	proposed by GTT
Mn-S	Liquid	(Mn, <mark>MnS</mark> , S)	Steel database
CaS-FeS	Oldhamite	(<u>Ca</u> , Fe)(S)	modelled by GTT
CaS-MgS	Oldhamite Niningerite	(<u>Ca</u> , Mg)(S) (Ca, <u>Mg</u>)(S)	modelled by GTT
FeS-MgS	Troilite-HT Niningerite	(<u>Fe</u> , Mg)(S) (Fe, <u>Mg</u>)(S)	modelled by GTT

Metal oxide - Metal sulphide phase diagram

CaS-FeS phase diagram

CaS-MgS phase diagram

FeS-MgS phase diagram

GTT-Technologies

O. V. Andreev, A. V. Solov'eva, and T. M. Burkhanova, Zh. Neorg. Khim., 51 [11] 1938-1941 (2006); Russ. J. Inorg. Chem. (Engl. Transl.), 51 [11] 1826-1828 (2006).

Isothermal section in Fe-O-S at 1324°C

Isothermal section in Fe-O-S at 550°C

The Al₂O₃-CaO-CaS ternary system

The CaO-CaS-SiO₂ ternary system

Isothermal section in CaS-FeS-MgS at 800°C

Addition of MnO_x (MnO + Mn, $Mn_2O_3+O_2$)

- The Mn-O binary system
- The Al_2O_3 -MnO_x system
- The CaO-MnO_x system
- The CrO_x-MnO_x system
- The FeO_x-MnO_x system
- The MgO-MnO_x system
- The MnO_x-SiO₂ system
- The ternary CaO-FeO-MnO system
- The ternary CaO-MgO-MnO system
- The ternary MgO-MnO-SiO₂ system

Addition of MnO and Mn₂O₃

GTT-Technologies

The associate species containing Mn were added in order to describe the liquid phase in the AI_2O_3 -CaO-Cr₂O₃-FeO-Fe₂O₃-MgO-SiO₂ system containing MnO_x.

System	Associate species	Description
		MeO _x : MnO (:MeO)
Al ₂ O ₃ - MnO	Al ₂ MnO ₄	
Cr ₂ O ₃ – MnO	Cr ₂ MnO ₄	1:1
Fe ₂ O ₃ -MnO	Fe ₂ MnO ₄	
MnO-SiO ₂	MnSiO ₃ , Mn ₂ SiO ₄ (like with Ca ⁺² , Fe ⁺² and Mg ⁺²)	1:1 and 1:2
MgO-MnO-SiO ₂	MgMnSi ₂ O ₆	1:1:1

Modelling of Mn-containing phases

Phase	Description
МеО	(<i>Al</i> + ³ , <i>Ca</i> + ² , <i>Cr</i> + ³ , <i>Mn</i> + ² , <i>Mn</i> + ³ , <i>Fe</i> + ² , <i>Fe</i> + ³ , <i>Mg</i> + ² , <i>Na</i> + ¹ , <i>Va</i>)(<i>O</i> - ²)
Cubic Spinel	(Al ⁺³ ,Cr ⁺² ,Cr ⁺³ ,Fe ⁺² ,Fe ⁺³ ,Mg ⁺² ,Mn ⁺²)(Al ⁺³ ,Ca ⁺² ,Cr ⁺³ , Fe ⁺² ,Fe ⁺³ ,Mg ⁺² , Mn ⁺² ,Mn ⁺³ ,Mn ⁺⁴ ,Va)2 (Cr ⁺² , Fe ⁺² , Mg ⁺² ,Va) ₂ (O ⁻²) ₄
Tetragonal Spinel	(Cr ⁺² , Cr ⁺³ , Mn ⁺² , Mn ⁺³)(Al ⁺³ , Cr ⁺³ , Fe ⁺³ , Mn ⁺² , Mn ⁺³ , Va) ₂ (O ⁻²) ₄
Corundum	(Al ⁺³ , Cr ⁺² ,Cr ⁺³ ,Fe ⁺³ ,Mn ⁺³) ₂ (Cr ⁺³ ,Va)(O ⁻²) ₃
Bixbyte	$(Cr^{+3}, Fe^{+3}, Mn^{+3})_2 (O^{-2})_3$
Olivine	(Ca ⁺² , Fe ⁺² ,Mg ⁺² ,Mn ⁺²)(Ca ⁺² ,Fe ⁺² ,Mg ⁺² ,Mn ⁺²)(Si ⁺⁴)(O ⁻²) ₄
Rhodonite	(Mg ⁺² , Mn ⁺²)(Si ⁺⁴)(O ⁻²) ₃
Protopyroxene	(Ca ⁺² ,Mg ⁺² ,Mn ⁺²)(Si ⁺⁴)(O ⁻²) ₃

The binary Mn-O phase diagram

The Al₂O₃-MnO system in equilibrium with Mn

GTT-Technologies

K.T. Jacob, Can. Metall. Q., 20 [1], (1981), pp. 89-92.

201 1

HOC

Test.

1300

\$3,01

The CaO-MnO and MgO-MnO binary systems

The Cr_2O_3 -MnO system under CO/CO₂ = 4.8

GTT-Technologies

 $MnO - Cr_2O_3 - CO_2 - CO$ $CO_{/}(MnO+Cr_{2}O_{2}) (mol/mol) = 1, CO_{/}(MnO+Cr_{2}O_{2}) (mol/mol) = 4.8,$ GactSage" 5.8 bar 2500 0 [[Garbers-Craig, Dippenaar, 1997] 2300 Slag 2100 Slag + Cr,O,(s) 1900 Slag + SPINEL SPINEL 1700 IfeO 1500 SPINEL + Cr,O,(s) T(C) 1300 MeO + SPINEL 1100 900 700 500 300 100 0.2 0.8 0 0.4 0.6 1

Cr₂O₃/(MnO+Cr₂O₃) (mol/mol)

The Cr₂O₃-Mn₂O₃ system in air

GTT-Technologies

 $Mn_2O_3 - Cr_2O_3 - O_2$ GactSage" $p(O_2) = 0.21 \text{ bar}, 1 \text{ bar}$ [Pollert, 1980]: 2500 [Naoumidis, 1991] ▼ Bixbyte single phase [Pollert, 1977] Bixbyte boundary 2300 ♦ Spinel single phase Spinel boundary 2100 Corundum boundary Slag 1900 1700 1500 T(C) 1300 **SPINEL CORUNDUM + SPINEL** 1100 Tetragonal-Spine 900 ۲ 700 Bixbyte 500 CORUNDUM 300 100 0.2 0.4 0.6 0.8 0 1

Cr₂O₃/(Mn₂O₃+Cr₂O₃) (mol/mol)

The FeO-MnO system in equilibrium with Fe

The Fe₂O₃-Mn₂O₃ system in air

A. Muan, S. Somiya, Am. J. Sci., 260 [3], (1962), pp. 230-240.

The MnO-SiO₂ binary system

L.L. Singleton, L. Carpenetr, N.v. Lunaquist, Kep. Invest.-U.S., Bur. Mines., No. 5938, (1962), pp. 1-31.

The Mn₂O₃-SiO₂ phase diagram in air

GTT-Technologies

The heat capacities, H_f and S_f of Rhodonite (*MnSiO*₃) and Braunite (*Mn*₇SiO₁₂) were obtained by Robie, Huebner and Hemingway 1995.

The CaO-FeO-MnO ternary system

The CaO-MgO-MnO ternary system

Isopletal orthosilicate section Mg₂SiO₄-Mn₂SiO₄

F.P. Glasser, E.F. Osborn, J. Am. Ceram. Soc., 43 [3], (1960), pp. 132-140.

Isopletal metasilicate section MgSiO₃-MnSiO₃

J. Ito, Am. Mineral., 57 [5-6], (1972), pp.865-876.

Liquidus surface in MgO-MnO-SiO₂

Conclusions

- The liquid phase in all subsystems was evaluated using associate species model,
- All systems were assessed using experimental phase diagram information.
- The 3 solid solution phases containing S (Oldhamite, Niningerite and Troilite-HT) were incorporated.
- MnO_x has so far been integrated into the reduced core system CaO-MgO-Al₂O₃-CrO_x-FeO-Fe₂O₃-SiO₂. All binary and 3 ternary systems were described.
- The stoichiometric phases MnSiO₃, Mn₂SiO₄ and Mn₇SiO₁₂ were incorporated. The solubility ranges of 8 solid solution phases containing Mn (such as Cubic-Spinel, Tetragonal-Spinel, Bixbyte, Olivine, Rhodonite, Protopyroxene, Monoxide and Corundum) were described using the sublattice model.

Future developments

GTT-Technologies

MeS-MeSO₄-MeO

Ternaries with MnO_x and Oxide Database $(Al_2O_3-CaO-CrO_x-FeO_x-K_2O-MgO-Na_2O-SiO_2)$

Thanks for your attention !

