Modelling lead recycling processes

Sander Arnout, Els Nagels, Bastien Soete GTT Annual Users' meeting 2013

Ins

InsPyro: inspiring metallurgy

- Consultancy company
- Based in Leuven, Belgium
- Customers DE, FR, NL, BE+
- Started 2009 and growing steadily
- Metallurgical process optimization **ERAS** Heraeus */Electro-Nite SADACI and process development
- Software tools, course program
- Started with mainly steel, but quickly moved into non-ferrous
- Several references in lead recycling

InsP

Lead recycling

- Lead has a low melting point (330°C), high density (11 kg/dm³), and relatively low price (1500€/t)
- Lead used to be a component in several products, ranging from leaded petrol, paints, and tubes.
- Due to its toxicity, "distributed" applications are phasing out, but several "contained" applications remain where lead has unbeatable characteristics:
 - X-ray shielding
 - Anodes for metal production
 - Solders and semiconductors
 - Lead-acid batteries

- Contained applications guarantee appropriate recycling:
 - 99% recycling of lead in Western world
 - Worldwide more recycled lead than primary lead produced

Lead recycling

 In volume, leads major application is lead-acid batteries, which are therefore also the main source for recycling

- Reactions on discharging:
 - $PbO_2 + HSO_4^- + 3H^+ + e^- = > PbSO_4 + 2 H_2O$
 - Pb + HSO₄⁻ => PbSO₄ + H⁺ + 2 e⁻
- A major impurity in batteries is sulphur, from reacted plates and paste and from retained acid

InsPyro

Lead recycling

- A major impurity in batteries is sulphur, from paste and acid
- Smelting happens in relatively small scale, which does not allow for a sulphuric acid plant
- Sulphur needs to be captured either by paste desulphurization or during smelting
- Efficient additions during smelting are iron and sodium carbonate
- Pb reduction is relatively easy, but more reducing conditions are needed for good S capture

Process 1: Rotary furnace

Sulphuric acid (0)

Photo: Recycle Eko-Start recycle.com.mk

Process 2: Lead shaft furnace

Thermodynamics of the matte

- InsPyro has constructed a model for the matte:
 - Pb-Fe-S-O-Na system at sulphur rich side
 - Diagrams in literature are limited and several interactions have to be "guesstimated"
 - Several particularities

Thermodynamics of the matte

- High solubility for PbS in the matter phase
- But limited solubility for Pb when sufficient Fe present
 - Pb content not related to reduction of PbO but to S capture

Thermodynamics of the matte

- Substantial solubility for FeO (not Fe_2O_3) and for Fe in "FeS (l)"
- Lowering of melting temperatures with Na in system
- Sb behaviour very different from Pb

Thermodynamics of the slag system

 FeO-CaO-SiO₂-S system in fluxed Fe practice

SiO₂

 FeO-Na₂SO₄-PbO-S system in soda ash+Fe practice

Salt oxide mixtures: very little data!

DSC measurements on matte

InsPyro

Modelling of the process

- Equilibrium calculations for rotary furnace (process 1)
 - Battery paste, metal, iron and sodium carbonate in charge
 - Temperature set to 950°C
 - Closed box equilibrium

InsP

Process modelling - main phases

- Effect of carbon on system with CFS slag
- High Pb(I) at low reduction, but S-rich and PbS(g) losses

Process modelling - gases

- With formed CO, Pb and PbS evaporate
- SO₂ capturing only works well with sufficient reductants

Process modelling – effect of Na₂CO₃

- Sodium state changes from Na₂SO₄ to Na₂S with reduction
- No large difference in amount of S => depends on iron

Process modelling – shaft furnace (process 2)

Similar calculation, with recycled slag, no soda, at 1200°C

InsP

Process modelling – slag composition

- Effect of carbon on CaO-FeO-SiO₂ slag
- FeO as indicator of reduction: is not to be trusted
- FeO as indicator of amount of Fe: even worse!

More detailed modelling of the process

- Simusage model for process 2
 - Easy to construct more complex model
 - Key is still in mass balance reconciliation and thermodynamic description

19

Process modelling

 Lead yield as a function of additions allows for economic evaluation

Process modelling

Lead yield as a function of additions allows for economic evaluation

Conclusions

- In the work of InsPyro process modelling plays a key role
- Descriptive models help to understand process mechanisms and tendencies
- These can be a guide for process optimization
- Good thermodynamic descriptions remain crucial, as well as determining missing data in the lab...
- Realizing a predictive model is never easy, but if succesful, it can be used for faster process optimization and economic trade-offs

