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Background 
 Black liquor combustion [1] in recovery 

boiler and black liquor gasification [2,3] and 

related chemistry are modelled by 

thermodynamic equilibrium based on the 

Gibbs’ energy minimisation. 

 It is known that the sodium and sulphur 

concentrations in the fume of industrial 

processes  differ from the modelled 

concentrations [4] (Fig. 1). Also potassium 

and chlorine are enrichning to the fume. 

 Super-equilibrium is formed. 

 A proposed explanations of the phenomena 

is very rapid, kinetically constrained 

pyrolysis of droplets at the earlier stage of 

combustion. [4] 
Table 1. Release of sulphur, sodium, potassium and chloride to flue 

gases 
  S Na K Cl Type 

Hupa et al. [5] 54 % 17 % Laboratory 

Salmenoja et al. [6] 1.1-1.4 1.0-6.0 Industry 

Mikkanen et al. [7] 24-36 % 10-12% 1.3-1.7 Industry 

Janka et. al [8] 1.3-1.6 3.0-4.5 Industry 

Vakkilainen [9]     1.0-2.5 0.3-6.0 Industry 

S: Sflue gas/Sblack liquor 

Na: Sflue gas/Sblack liquor 

K: (Kflue gas/(K + Na)flue gas)/(Kblack liquor/(K + Na)black liquor);  

Cl: (Clflue gas/(K + Na)flue gas)/(Clblack liquor/(K + Na)black liquor) 

Figure 1. S and Na concentrations in the fume of recovery boiler as 

a function of temperature. Estimated values based on the 

thermodynamic equilibrium and typical industrial values [1]. 
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Definitions of super-equilibrium 

 A state where excess amount of species occurs in particular phase compared to 

equilibrium state. 

 A local equilibrium state with higher free energy of system. 

 Only partly constrained system with additional degrees of freedom 

 

 Examples: (i) Sorption of alkali metals to fibres, (ii) volatilisation of sodium and 

sulphur in recovery boilers, and (iii) formation of char, hydrocarbons, tar and 

ammoniac in gasification 

Figure i. Super-equilibrium of alkali metals in 
fibres (sorption) in pulp and paper mills. 
Constraints are electroneutrality of both 
aquous phases and fibre bound acidic groups. 
[24] 

Figure ii. Super-equilibrium of volatile alkali 
metals and sulphur in black liquour 
combustion. Constraints are volatilisation and 
enrichment of species. 
[25] 

Figure iii. Super-equilibrium of char, 
hydrocarbons, tar and ammoniac in syngas. 
Constraints due to the kinetic constraints in 
gasification. 
[26] 
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Background – recovery boiler 

modelling 
 Ash chemistry (e.g. Lindberg [10]) -> Focus on phase diagrams and prediction of 

sticky temperatures 

 Expert systems for recovery boiler (e.g. Backman et al. [11])-> Lower furnace as 

boundary condition with dual approach 

 Large scale process simulation (e.g. Uloth et al. [12]) -> Flue gas channel 

 Droplet modelling (e.g. Järvinen et al. [13]) -> dynamic phenomena of droplets 

 Fly ash particle formation (e.g. Mikkanen [14]) -> Agglomeration at the upper 

furnace 

 Bed modelling (e.g. Engblom [15])-> Kinetics of bed modelling, focus on carbon 

reactions 

 CFD (e.g. Grace et al. [16] and Leppänen et al. [17]) -> Gas phase and 

agglomeration 

=> Apparent need for a unified model which could be used for simultaneous 

estimation of the chemical reactions and heat generation of lower furnace 
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Hypothesis 

1. Constrained Free Energy (CFE) 

method can be used to predict the 

Na, K, S and Cl  content in fume 

with greater detail than traditional 

equilibrium (EQ) calculation. 

2. There is significant difference on 

the fume and smelt composition as 

well as the condensed phases of 

flue gas when CFE method is 

applied. 

3. A better prediction of Na, K, S and 

Cl in the fume could improve the 

computational analysis of boiler 

problems. 

Figure 2. An example of recovery boiler [18]. 
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Methodology 

 Modelling the recovery boiler combustion process is done in two parts: (i) 

lower part of the furnace and (ii) upper part and flue gas channel. 

 Oxygen demand in combustion is calculated according [3]. Only fume is 

considered. (Carry-over is not included). 

 BL composition is shown in Table 2. 

 BL is described based on the elements and HHV of black liquor. 

Table 2. Black liquor composition used in this study [4] 

C H Na K S Cl N O Moisture content S/2Me -ratio 

[wt-%] [wt-%] [wt-%] [wt-%] [wt-%] [wt-%] [wt-%] [wt-%] [wt-%] [%] 

32.3 3.3 21.4 2.3 5 0.7 0.1 34.9 20 31.5 



7 20/12/2013 

Methodology  

Model definition 
 Part 1 of model 

 Lower part of furnace 

 Liquor spraying, drying, pyrolysis, char 

combustion, reactions in char bed 

 Black liquor and air as input streams 

 Air: . λfurnace = 0.7, 

 Temperature range 600 – 1400 C 

 Both equilibrium (EQ) and constrained 

equilibrium (CFE) are studied in part 1 

 Part 2 of model 

 Upper furnace 

 Flue gas channel, heat exchangers 

 Two cases (cold furnace: 900 C and hot 

furnace: 1100 C) are calculated 

 Gas phase from part 1 and air are used 

as input streams 

 Excess air 

 Temperature range 1200 -> 200 C 

 Only equilibrium (EQ) is considered 

Figure 3. Two parts of the developed model . Background figure from  

[18]. 

Part 1. 

Part 2. 
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Methodology 

Constrained Free Energy (CFE) 
 Use of immaterial constraints in 

Gibbs energy minimization was 

first introduced by Alberty [27] and 

further developed for reaction 

kinetics by Keck and Koukkari 

[28,29] and further defined as 

Constrained thermodynamic 

equilibria (CFE) technique and 

applied for various applications by 

Koukkari and Pajarre [22,23]. 

 Commercial minimisation software 

ChemSheet [20] is applied. 

 A typical chemical system (Na-K-

S-Cl-C-O-H-N) for black liquor 

combustion is obtained from [21]. 

System is described in more detail 

in [10]. 

 

 

 

 

 Gibbs’ free energy method is 

extended with additional virtual 

constraints. 

 Extended model is used to predict 

the super-equilibrium of Na, K, S 

and Cl in fume. 

 Constraints: 
 Na in the fume: 10 % total Na at 

1000 C 

 S in the fume: 30.0 % of total S 

at 1000 C (S/2Me = 1 at 1000C) 

 Enrichment factors: 
 K in the fume: EFK =  1.4 

 Cl in the fume: EFCl = 2.5 
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• Reactions in gas 

• Na+(g) + H2O(g) → NaOH(g) + H+(g) 

• ΔrG=0 

• E.g. 

 

Methodology - Constrained Free Energy 
Table 3. Sample of the extended stoichiometric matrix. Original database is from (FactSage 2013). Four virtual system components (Na*, S*, K* and Cl*) 

and four virtual constituents (R_Na, R_K, R_S, R_Cl) are introduced for calculation of super-equilibrium. 

Phase 
Constitue

nt 
K Cl S Na O N C H Na* K* S* Cl* 

Gas phase H 1 

Na 1 1 

NaOH 1 1 1 1 

H2O 1 2 

CO 1 1 

NaCl 1 1 1 1 

  KCl 1 1               1   1 

  SO2     1   2           1   

  …                         

ASalt-liquid Na2CO3 2 3 1 

C C 1 

… … 

R_Na R_Na +1 

R_K R_K +1 

R_S R_S +1 

R_Cl R_Cl +1 
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Results – Model vs. reference  

Figure 4. Equilbrium concentrations  of S and 2 Me (2 

Na + 2 K) in the fume of recovery boiler as a function of 

temperature. λfurnace = 0.7. Volatility: xNa = 10 %, xS = 30 

% at 1000 C. EFK = 1.4 and EFCl = 2.5. Reference figure 

from  [1]. 

S,tot (EQ) 
2 Me,tot (EQ) 

S,tot (CFE) 

2 Me,tot (CFE) 

Figure 5. S/2Me - molar-ratio of fume, smelt and black 

liquor. Dashed lines refer to CFE, solid lines to EQ. 

λfurnace = 0.7. Volatility: xNa = 10 %, xS = 30 % at 1000 C. 

EFK = 1.4 and EFCl = 2.5.  
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Results – Na and S in the fume 

Figure 6. Equilbrium concentrations  of S and Na in the 

fume. Only major constituents including S and Na shown. 

λfurnace = 0.7. Volatility: xNa = 10 %, xS = 30 % at 1000 C. 

EFK = 1.4 and EFCl = 2.5.  

Figure 7. Constrained  equilibrium concentrations  of S 

and Na in the fume. Only constituents including S and Na 

shown. λfurnace = 0.7. Volatility: xNa = 10 %, xS = 30 % at 

1000 C. EFK = 1.4 and EFCl = 2.5.  

EQ CFE 
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Results – Na and S in smelt 

Figure 8. Equilbrium concentrations  of S and Na in 

smelt. Only major consituents shown. λfurnace = 0.7. 

Volatility: xNa = 10 %, xS = 30 % at 1000 C. EFK = 1.4 and 

EFCl = 2.5.  

Figure 9. Constrained  equilibrium concentrations  of S 

and Na in smelt. Only major constituents shown. λfurnace = 

0.7. Volatility: xNa = 10 %, xS = 30 % at 1000 C. EFK = 1.4 

and EFCl = 2.5.  

EQ CFE 
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Results – Na and S in condensed phases 

from the fume 

Figure 11. Condensed phases from the fume Only major 

consituents shown. Dashed lines refer to CFE, solid lines 

to EQ. Tfurnace = 900 C. λfurnace = 0.7. Volatility: xNa = 10 

%, xS = 30 % at 1000 C. EFK = 1.4 and EFCl = 2.5.  

Figure 12. Condensed phases from the fume Only major 

consituents shown. Dashed lines refer to CFE, solid lines 

to EQ. Tfurnace = 1100 C. λfurnace = 0.7. Volatility: xNa = 10 

%, xS = 30 % at 1000 C. EFK = 1.4 and EFCl = 2.5.  

Cold Hot 
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Results –K and Cl in condensed phases 

from the fume 

Figure 13. Condensed phases from the fume. Major constituents 

with potassium shown. Dashed lines refer to Super-EQ, solid 

lines to EQ. Tfurnace = 900 C. λfurnace = 0.7. Volatility: xNa = 10 %, xS 

= 30 % at 1000 C. EFK = 1.4 and EFCl = 2.5 

Figure 14. Condensed phases from the fume. Major 

constituents with chlorine shown. Dashed lines refer to Super-

EQ, solid lines to EQ. Tfurnace = 900 C. λfurnace = 0.7. Volatility: 

xNa = 10 %, xS = 30 % at 1000 C. EFK = 1.4 and EFCl = 2.5.  
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Results – Sticky temperature 

Figure 15. Liquid fraction in condensed phases. . 

Dashed lines refer to CFE, solid lines to EQ. T15 and 

T70 marked as horizontal lines. λfurnace = 0.7. Volatility: 

xNa = 10 %, xS = 30 % at 1000 C. EFK = 1.4 and EFCl = 

2.5.  

Figure 16. Sticky temperature between T15 and T15 as 

function of volatility of sodium, xNa,  in the super-

equilibrium of fume. CFE assumption. λfurnace = 0.7. 

Volatility: xS = 30 % at 1000 C. EFK = 1.4 and EFCl = 2.5.  
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Discussion 
 Difference of fume composition is obvious when comparing the results from thermodynamic 

equilibrium and CFE-super-equilibrium. 

 In line with previous studies, which has utilised dual approach for modelling the lower 

furnace to compensate the restriction of utilising thermodynamic equilibrium.  

 Super-equilibrium approach can be used for successfully limiting the volatility of sulphur 

at cold furnace as well as volatility of sodium at hot furnace. 

 In addition the higher volatility at temperature range (900 – 1100°C) can be described 

with proposed super-equilibrium method. 

  Smaller differences is shown for char bed and smelt composition 

 Smaller difference in temperature range (900 -1100°C) 

 More obvious for very cold and very hot furnace 

 Noticeable difference is in the condensing phases from the fume  

 The ratio of sulphur vs. carbonate is increasing with Super-EQ assumption 

 Sticky temperature decreases when amount of sodium in the fume is increasing 

 T15 declines 40-50°C and T70 ~ 10°C when amount of sodium is changed from 1% to 

20% 

 NOTE: Only fume is considered in this study as the amount carry-over particles in flue gas is 

assumed smaller when compared to fume.  
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Conclusions #1 

 CFE-Super-equilibrium method was successfully applied to thermodynamic model of 

black liquor combustion. 

 Model consists of 

 Parameters for the amount of volatile Na and S 

 Enrichment factors for K and Cl 

 Virtual constraints to describe the super-equilibrium and connected to the 

compounds affinity to remain in fume. 

 Additional phase to describe the combusted black liquor as elements 

 Model predicts 

 Fume and smelt properties based on the constrained equilibrium of lower 

furnace  

 Effects of higher volatility and enrichment of components to composition 

 Sticky temperatures of condensed phases from the fume. 
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Conclusions #2 

 Developed method does not describe the actual phenomena of volatilisation during 

the droplet in-flight or char bed burning, but relays the previous work and studies.  

 By extending the chemical equilibrium system with constraints, it is possible to 

predict the measured excess of Na, K, S and Cl content in the fume. 

1. The exact principle of volatility can be implemented into the model 

2. Or measured amount of components can be forced to the fume 

 Clear benefit of presented approach is that super-equilibrium, namely constrained 

local equilibrium, can be solved with single calculation step while obtaining chemical 

composition and enthalpic effects simultaneously.  

 Ash chemistry of upper part of furnace can be solved with second calculation step to 

predict the condensed phases from the fume. 

 A promising application for presented approach is to implement model as part of 

large scale process simulator. 
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