Phase Diagrams with FACTSage Speaking different Languages for Thermochemical Properties

Michael Auinger

GTT-Technologies Annual Workshop and User's Meeting Herzogenrath-Kohlscheid (Aachen, Germany)

5th July, 2013

Motivation

- Thermochemical Properties in Oxides
 Ellingham-Richardson Diagrams
 - Stability Diagrams
- Thermochemistry of Oxides and Nitrides
 - Nitrides in the System Iron Chromium Carbon
 - Nitrogen and Oxygen in Iron Silicon

– Summary

Oxidation Processes in Steels

Grain Boundary Oxidation

Figure 18. Cross-section SEM micrographs of Fe–10Cr after isothermal oxidation for 72 h at temperatures between 800 and 900 °C in $Ar-4\%H_2-2\%H_2O$

The Problem

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Notice (N) (and well

pictures from various internet sources and FACTSage

The Problem

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

pictures from various internet sources and FACTSage

Lost in Translation?

"আমি তাপগতিবিদ্যা পৃচ্চন্দ "

"Мне нравится термодинамики"

أنا أحب الديناميكا " "الحر ارية

"我喜歡熱力學"

"Μου αρέσει θερμοδυναμική "

"나는 열역학을 좋아 "

"আমি তাপগতিবিদ্যা পৃচ্ন "

"Мне нравится термодинамики"

أنا أحب الديناميكا " "الحر ارية

"我喜歡熱力學"

"Μου αρέσει θερμοδυναμική "

"나는 열역학을 좋아 "

"আমি তাপগতিবিদ্যা পৃচ্চন্দ "

"Мне нравится термодинамики"

"나는 열역학을 좋아 "

Part I

Thermochemical Properties of Oxides

Ellingham Diagram

Figure 12.13 The Ellingham diagram for selected oxides.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Oregon State University at www.oregonstate.edu (dl 02.07.2013)

 $2 \text{ Fe} + \text{O}_2 \iff 2 \text{ FeO}$

🗘 Menu - Phase Diagram: last system	
File Units Parameters Variables Help	
T(K) P(atm) Energy(J) Mass(mol) Vol(litre)	👖 📑 🕒 📧
Components (2)	
Variables: Fe-02 R(T/K)In n(02)/har (I) vs T(K)	
Prod -Variables Co Y Compositions X A X B C X B C X B C X B C X B C X B C X Next>> X Steps: 50 Next> Next>	V
Ta n #1 R(T/K)In(p/bar) Y-axis 02 gas -1200000 Cancel	19 0 ОК
Vari T(K) RTln(p(02)) Y X 273 1973 -1200000 0 X X RTln p(02) vs T(K) X X X	Calculate >>
FactSage 6.3	

 $-2 G_{(T)}^{o, FeO} + 2 G_{(T)}^{o, Fe} + G_{(T)}^{o, O_2} = -R \ln \left(\frac{p_{O_2}}{p_o}\right) T$

 $2 \operatorname{Fe} + \operatorname{O}_2 \iff 2 \operatorname{FeO}$

🕼 Menu - Phase Diagram: last system		
File Units Parameters Variables He	lp	
	T(K) P(atm) Energy(J) Mass(mol) Vol(litre)	👖 📑 🕒 📧
Components (2)		
Variables: Fe-O2 R(1/K)In p(O2)/bar (J) vs I (K)	
Prov Co V Co V Co Co V Co Co V Co Co Co V Co Co Co Co Co Co Co Co Co Co	T and P Temperature T(K) X-axis T(K) Max: 1973 C Min: Z73 C V(litre) Image: C Image: C	
Ta •n #1 B(T/K)In(p/bar) ○2 ○2 gas • 1200000	Cancel	19 0 0K
Vari RTln(p(02)) 273 1973 -1200000 0 RTln p(02) vs T(K)		Calculate >>
FactSage 6.3		

$$-2 G_{(T)}^{o, FeO} + 2 G_{(T)}^{o, Fe} + G_{(T)}^{o, O_2} = -R \ln \left(\frac{p_{O_2}}{p_o}\right) T$$

Ellingham Diagrams for Oxide Formation

Ellingham Diagrams for Oxide Formation

T(K)

Stability Diagrams with FACTSage

$2 \text{ Fe} + \text{O}_2 \iff 2 \text{ FeO}$

存 Menu - Phase Diagram: last system		
File Units Parameters Variables Help)	
	T(K) P(atm) Energy(J) Mass(mol) Vol(litre)	III 🖳 🕒 🐨
Components (2)	m vs T(K)	×
Prov Co Y Co Y Co Y Co Co Y Co Co Co Y Co Co Co Y Co Co Co Co Y Co Co Co Co Co Co Co Co Co Co	Temperature T(K) X-axis C 1/TK Max: 1973 Min: 273 C log P C V(litre) C log V	
Ta -n #1 log10(p/atm) Y-axis ▼ 02 ▼ 0 gas ▼ -100	Cancel	18 ОК
T(K) log10(p(02)) 273 1973 -100 0 log10 p(02)/atm vs T(K)		Calculate >>
FactSage 6.3		

Stability Diagrams with FACTSage

T(K)

Comparison

Properties of Oxygen

Iron – Manganese – Chromium alloy

Figure: Spatial phase distribution in an Fe, 2 wt-% Mn, 0.8 wt-% Cr alloy after oxidation at $p(O_2)=3 \cdot 10^{-22}$ bar and 700 °C for 120 min and ternary phase diagram.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

published in Mater. Sci. Forum 969 (2011) p.76

Part II

Gaseous Nitriding in the system Fe - Cr - C

Nitriding of Fe, 1 wt-% Cr, 0.10 wt-% C and

Conditions: 48 h at 500 °C $p(NH_3) : p(H_2) = 100 (K_N = 1 000)$

Theoretical Principles

Figure: Lehrer-Diagram of iron nitrides according to literature (left) and calculated with the programme FactSage (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

http://www.ipsenusa.com (dl 12.10.2010)

Iron – Chromium – Carbon alloy

Fe₂N + CrN + C

Fe₄N + CrN + C

Fe + C + CrN

0.50

Fe

 $x_{Cr} / (x_{Cr} +$

 10^{1}

 10^{-1}

 $u_{\rm e} = p_{\rm o}^{0.5} p_{\rm NH_{\rm o}} / p_{\rm H_{\rm o}}^{1.5} - 10_{0.2}$

 $\mathbf{K}_{\mathbf{N}}$

 10^{-7}

 CrN

0.25

Cr₂N

Fe + Cr ر +Cr₂₃C

5

0

-10

 $\log_{10}(p_{N_2}) / bar$

Fe₄N Fe₂N CrN Cr₃C₂ Cr₇C₃ Cr₂₃C₆ γ' -Phase ϵ -Phase

Figure: Spatial phase distribution in an Fe, 1 wt-% Cr, 0.1 wt-% C alloy after gas nitriding at K_N = 2.4 and 500 °C for 48 h and phase stability diagram.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

published in HTM J. Heat Treatm. Mat. 66 (2011) p.100

C

0.00

Binary Phase Diagrams

Binary Phase Diagrams

The System Iron – Nitrogen

Figure: Nitrogen Solubility in Iron at 1 bar (left) and binary Iron-Nitrogen phase diagram, calculated with FACTSage (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

H. Zitter, L. Habel Arch. Eisenhüttenwes. 44 (1973) 181.

GactSage"

0.25

The System Iron – Nitrogen

Figure: Nitrogen Solubility in Iron at 1 bar (left) and binary Iron-Nitrogen phase diagram, calculated with FACTSage (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

H. Zitter, L. Habel Arch. Eisenhüttenwes. 44 (1973) 181.

0.15

liquid

Fe₂N

0.2

0.25

GactSage"

The System Iron – Nitrogen

Figure: Nitrogen Solubility in Iron at 1 bar (left) and binary Iron-Nitrogen phase diagram, calculated with FACTSage (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

H. Zitter, L. Habel Arch. Eisenhüttenwes. 44 (1973) 181.

Fe₂N

0.2

0.25

GactSage"

Part III

Gaseous Nitriding and Oxidation in the system Fe – Si

Nitriding of Fe, 1 wt-% Si

Conditions: 20 h at 550 °C ($K_N = 1\ 000$) 4 h at 550 °C ($K_O \approx 0.01$)

Stability Diagram of Iron – Silicon

Figure: Stability diagram of an Fe, 1 wt-% Si alloy at 550 °C with respect to the partial pressures of nitrogen and oxygen (SGTE Pure Substance Database).

Simulation Results with ASTRID

Figure: Spatial phase distribution in Fe, 1 wt-% Si after gaseous nitriding for 20 h at $K_N = 1\ 000$ and oxidation for 4 h and $K_O \approx 0.01$ ($p_{tot} = 1$ atm, 550 °C).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Appl. Simul. of Thermodyn. Reactions and Interphase Diffusion

Ternary Phase Diagrams

Ternary Phase Diagrams

Ternary Phase Diagrams

Conclusions - The Problem

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Conclusions – An Effective Solution

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Conclusions – An Effective Solution

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Conclusions – An Effective Solution

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Acknowledgements

Max-Planck-Institut für Eisenforschung GmbH

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology Prof. H. Danninger Vera G. Praig, Markus Holzweber, Kurt Piplits

EINEN SCHRITT VORAUS.

Dr. D. Paesold Bernhard Linder, Klaus Rendl, Andreas Muhr

EINEN SCHRITT VORAUS.

Backup Slides

Additional Slides for the Presentation

Where we work...

Max-Planck-Institut für Eisenforschung GmbH

Head: Prof. Dierk Raabe

Founded in 1917 from the "Kaiser Wilhelm Institute" by Fritz Wüst.

3 Departments:

Computational Materials Design Interface Chemistry and Surface Engineering Microstructure Physics and Alloy Design

From where I am

Austria

Area: Inhabitants: ~ 8 405 000 Language:

- 83 879 km²
- German

Capital:

Vienna

Fisher's Model of Diffusion

Levine – MacCallum equation

$$s\,\delta D_{GB} = 0.4704\,\sqrt{\frac{D}{t}}\left(\frac{\partial\log\bar{c}}{\partial z^{6/5}}\right)^{-\frac{5}{3}}$$

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

 $s \,\delta D_{GB} = 0.3292 \sqrt{\frac{D}{t}} \left(\frac{\partial \log \bar{c}}{\partial z^{6/5}}\right)^{-\frac{5}{3}}$

I. Kaur "Fundamentals of ... Boundary Diffusion" WILEY (1995)

Some Published Works on HT-Corrosion

JPEDAV (2005) 26:487-493

ARTICLE IN

Abstract	Article history: Received 1 Decer Accepted 22 Fehr Available online
A coup	
phase tern	Key words:
ar wall as	A Steel
as well di	B. TEM
manifim la c	

nber 201

multiple c C Oxidation a y-Ni-27

uary 201

1. Introduction

Internal corrosion is a generic kind of material degrada-26 Februa tion occurring at high temperatures that is driven by the inward diffusion of a corrosive species (i.e., oxygen, nitrogen, carbon, or sulfur, followed by internal precipitation of the respective oxides, nitrides, carbides, and sulfides).[1] Contrary to the formation of superficial scales, which in the case of Cr2O3 and Al2O3 protect the substrate against excessive corrosion attack.^[2] internal corrosion may result in a deep deterioration of the physical properties of the mateconstitution or the developing oxidation stage, whereas the e rial (e.g., creep resistance and high-temperature fatigue strength).[3,4] Figure 1 shows an example of internal oxidaparabolic oxide-layer growth ratio (Al₂O₃) and nitridation (AlN; penetration depth $\xi =$

@ 2003 Acta Materialia Inc. P 600 µm) underneath a thin Cr2O3 scale.

Keywords: Modelling: Thermodyna

The mechanism of internal corrosion depends on the local concentrations and the diffusivities of the corrosive species and the metallic elements in the substrate. For the example shown in Fig. 1, a low oxygen partial pressure, $p(O_2)$, and relative to the nitrogen partial pressure $p(N_2)$ in the combustion gas leads to conditions in the material interior, for

Basic and Applied Research: Section I

11 b_V ith ١g It This e the lose to t shown cal soluutions are

ates

i is

Oxidation

is a

ac.

an

r

1

ortion

Fig. 1 Internal oxidation and nitridation attack of a failed natural gas burner tube of alloy 601 operated at T = 1100 °C

which AIN instead of Al₂O₃ is the thermodynamically most stable compound.*

Even in the case of Al₂O₃-scale-forming Ni-base super-

Internal Corrosion of Engineering Alloys: Experiment and Computer Simulation

Ulrich Krupp and Hans J. Christ

(Submitted July 18, 2005)

High-temperature corrosion is generally known as a material degradation process that occurs at the surface of engineering components. In the case of internal corrosion, the corrosive species penetrates into the material by solid-state diffusion leading to the formation of internal precipitates, for instance, oxides (internal oxidation), nitrides (internal nitridation), and carbides (carburization). It is known from numerous publications and technical failure cases that internal corrosion results in a strong deterioration of the properties of a material (i.e., near-surface embrittlement or the dissolution of strengthening phases). The present article introduces the classic theory of internal oxidation and reviews some recent research on internal corrosion phenomena that are closely related to the failure mechanisms of thermally grown protective oxide scales on several commercial high-temperature alloys (e.g., single-crystalline and polycrystalline Ni-base alloys and Cr steels). The mechanisms and kinetics of internal corrosion processes are determined by the temperature, the local chemical composition of the material, the solubility and diffusivity of the corrosive species, as well as the mechanical loading conditions. These influence factors are taken into account by means of a computer model combining a numerical finite-difference approach to solve the diffusion differential equations with the thermodynamic tool ChemApp. Using several examples, it is shown that the model has been applied successfully to simulate the internal nitridation, carburization, and oxidation of hightemperature alloys.

Data Handling

Figure: Spatial phase distributions of Fe, 2 wt-% AI (4.05 mol-% AI) after oxidation at $p(O_2) = 10^{-22}$ bar for 60 min at 700 °C.

Detail of a Grain Boundary

Figure: Spatial distribution of chromium oxides Cr_2O_3 and $FeCr_2O_4$ along a grain boundary in Fe, 3 wt-% Cr after finished cooling from 650 °C.

Diffusion between different Phases

$$J_A = -D \nabla c$$

 $J_A = -L \nabla \mu$

Figures: Shibuya (渋谷) crossing in Tokyo with green and red pedestrian lights.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

http://adsjapan.blogspot.com and http://www.gettyimages.com

Modelling Segregation

11 x 11 x 57 nm³ <001>

Figure: Numerical simulation of segregation (left) and 3D atom probe tomography of segregated boron atoms along the grain boundary in a NiAl superalloy [1] (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

[1] Blavette et al. Microsc. Microanal. 13 (2007) 464

Calculation of the Oxidation Depth

Multikomponentensysteme

0

Mn

Abbildung: Phasenverteilung einer industrienahen Legierungszusammensetzung nach erfolgter Oxidation bei $p(O_2) = 10^{-22}$ bar und einer technischen Abkühlkurve.

Diffusion equation

 $D_{i(T)} = D_i^o e^{-\frac{Q}{RT}}$

Figure: Temperature dependence of phosphorous diffusion in iron.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

I. Stloukal, C. Herzig, Z. Metallkd. 93 (2002) 88

Thermodynamic Principles

Figure: State diagram of water [2] (left) and schematic temperature evolution with constant heating (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

[2] University of Bristol at <u>www.enm.bris.ac.uk</u> (dl 15.10.2010)

Efficiency of the Calculation

Max: 0.352 0.35

300 FEM-points Calculation time: 90 min 63 000 FEM-points Calculation time: 120 min

Figure: Distribution of Cr₂O₃ in Fe, 0.67 wt-% Cr at 700 °C after 90 min. Simulation with InCorr (left) and with self-written programme (right).

Berechnungsaufwand

Abbildung: Abhängigkeit der Rechenzeit zur Simulation des Oxidationsverhaltens von Fe, 3 wt-% Cr bei verwendetem Kühlprogramm ab 650 °C (B).

Grain Boundary Diffusion Regimes

Coarse grained

Fine grained

C'-regime

B'-regime

A' – regime

Figure: Illustration of different diffusion regimes, depending on total diffusion time and ratio of D_{GB}/D .

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

I. Kaur "Fundamentals of ... Boundary Diffusion" WILEY (1995)

Experimental Set-up

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

in Rev. Sci. Instr. (2013), accepted

Figure: Experimental parameters during selective decarburisation of Fe, 0.8 wt-% C at 800°C in Ar / 2.5 vol-% H_2 / H_2O .

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Fe, 0.8 wt-%C, 800 °C, Ar/2.5% H₂, DP+13°C

Figure: Mass change during selective decarburisation of Fe, 0.8 wt-% C at 800°C in Ar / 2.5 vol-% H_2 / H_2O .

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Figure: Cross section of Fe, 0.8 wt-% C after oxidation at 800 °C in Ar / 2.5 % H_2 / H_2O for 60 min. The cross section was etched with 1 % HNO₃ / Ethanol for 15 s.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Figure: Evolution of the decarburised zone depth in Fe, 0.8 wt-% C after oxidation at 800 °C in Ar / 2.5 % H_2 / H_2 O. The solid lines represent theoretical results.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

temperature / °C

Figure: Evolution of the mass change in Fe, 0.8 wt-% C during oxidation at 800 °C in Ar / 2.5 % H_2 / H_2O . The solid lines represent the theoretical results.

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

Ellingham – Formulas + FACTSage Pic

$$2 \text{ Fe} + \text{O}_2 \iff 2 \text{ FeO}$$

$$\Delta G_{(T)}^{\text{Formation}} \approx 2 \ \mu_{(T)}^{\text{FeO}} - 2 \ \mu_{(T)}^{\text{Fe}} - \mu_{(T)}^{O_2} \stackrel{!}{=} 0$$

$$0 = 2 G_{(T)}^{o, FeO} + 2 RT \ln(a_{FeO}) - 2 G_{(T)}^{o, Fe} - 2 RT \ln(a_{Fe}) - G_{(T)}^{o, O_2} - RT \ln\left(\frac{p_{O_2}}{p_o}\right)$$

$$\Delta G_{(T)}^{o,Formation} = 2 G_{(T)}^{o,FeO} - 2 G_{(T)}^{o,Fe} - G_{(T)}^{o,O_2} = -RT \ln\left(\frac{p_{O_2}}{p_o}\right) + 2 \left(RT \ln(a_{FeO}) - RT \ln(a_{FeO})\right)$$

$$2 G_{(T)}^{o, FeO} - 2 G_{(T)}^{o, Fe} - G_{(T)}^{o, O_2} = -R \ln \left(\frac{p_{O_2}}{p_o}\right) T + 0$$

Properties of Nitrogen

10-24

0

0.5

1.0

1.5

Fig. 22. Fe. Diffusion coefficient for N diffusion in α , γ and δ -phase Fe vs. (reciprocal) temperature. Circles: calculated from equation quoted from [76S3].

2.0

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

figures from Landoldt-Börnstein (right) and FACTSage (left)

2.5

3.0

[66L2

3.5

-10⁻³ K⁻¹

41

Theoretical Principles

$$\frac{3}{2}H_2 + \frac{1}{2}N_2 \longleftrightarrow NH_3$$

$$G_{(T)}^{NH_3} - \frac{3}{2}G_{(T)}^{H_2} - \frac{1}{2}G_{(T)}^{N_2} = 0$$

$$K_{p(T)} = e^{-\frac{G_{NH_{3},(T)}^{o} - \frac{3}{2}G_{H_{2},(T)}^{o} - \frac{1}{2}G_{N_{2},(T)}^{o}}{RT}}$$

$$K_{p(T)} = \frac{p_{NH_3}}{p_{H_2}^{1.5} p_{N_2}^{0.5}} p_0$$

$$K_{N} = \frac{p_{NH_{3}}}{p_{H_{2}}^{1.5}} \sqrt{p_{0}}$$

$$K_N = \sqrt{p_{N_2}} \frac{K_{p(T)}}{\sqrt{p_0}}$$

Theoretical Principles

Figure: Lehrer-Diagram of iron nitrides according to literature (left) and stability diagram calculated with the programme FactSage (right).

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany

http://www.ipsenusa.com (dl 12.10.2010)