

THEREDA Database Project: Extensions of the Pitzer database with respect to phosphate, alkaline earth metal sulfates, heavy metals, and fission products – first results

Helge C. Moog

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)

Na2HPO4, binary system, osmotic coefficient

Source:

THEREDA

T. Scharge, A.G. Muñoz, H.C. Moog (2013): Thermodynamic model-ling of high salinary phosphate solutions. I. Binary systems.

J. Chem. Thermodynamics 64 (2013) 249–256.

http://dx.doi.org/10.1016/j.jct.2013.05.013.

Phosphate, all data, summary

- PO4<3->: relevant at pH>12 only. Not very reliable data.
- HPO4<2->, H2PO4<->: relevant species,
 - complete data for Na, K Cl,SO4
 But: some data quality deterioration because of PO4<3-> as PrimaryMaster in THEREDA
 - With Ca, Mg: no data so far
- H3PO4<0>: not considered, relevant at pH < 2 only.</p>

CsCl, binary system, low concentration

CsCI-NaCI-H2O, all data

CRS

Cs, all data, summary

Source:

T. Scharge, A. G. Munoz, and H. C. Moog: Activity Coefficients of Fission Products in Highly Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl, and SO42-: Cs+. J. Chem. Eng. Data 2012, 57, 1637-1647. dx.doi.org/10.1021/je200970v.

T. Scharge, A. G. Munoz, and H. C. Moog: Addition to "Activity Coefficients of Fission Products in Highly Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42-: Cs+". J. Chem. Eng. Data 2012, 57 (6), 1637-1647. DOI: 10.1021/je200970v.

System			PP	logK
Cs	Cl		\checkmark	\checkmark
Cs	SO4		\checkmark	\checkmark
Cs	Cl	Na	\checkmark	\checkmark
Cs	Cl	К	\checkmark	
Cs	Cl	Mg	\checkmark	\checkmark
Cs	Cl	Са	\checkmark	(√)
Cs	SO4	Na	\checkmark	\checkmark
Cs	SO4	К	\checkmark	(√)
Cs	SO4	Mg	\checkmark	\checkmark
Cs	SO4	Са		
Cs	Cl	SO4	\checkmark	(√)

<u>www.thereda.de</u> >> THEREDA Data Query >> Tailored databases >> 5th release

RbCI-H2O, osmotic coefficient

THEREDA

Rb2SO4-Na2SO4-H2O, solubilities and iso-activity lines

Rb, all data, summary

System			РР	logK
Rb	Cl		\checkmark	\checkmark
Rb	SO4		\checkmark	\checkmark
Rb	Cl	Na	\checkmark	(√)
Rb	Cl	К	(√)	(√)
Rb	Cl	Mg	\checkmark	(√)
Rb	Cl	Са	-	-
Rb	SO4	Na	\checkmark	(√)
Rb	SO4	К	\checkmark	-
Rb	SO4	Mg	-	\checkmark
Rb	SO4	Ca	-	-
Rb	Cl	SO4	\checkmark	(√)

Source:

T. Scharge, A. G. Munoz, and H. C. Moog: Activity Coefficients of Fission Products in Highly Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl, and SO42-: Rb+. (in preparation)

SrCl2-H2O, mean activity coefficient

SrCl2-H2O, osmotic coefficient

SrCl2-NaCl-H2O, 298.15K

Sr, all data, summary for 298.15K

System			РР	logK
Sr	Cl		\checkmark	\checkmark
Sr	SO4		\checkmark	\checkmark
Sr	Cl	Na	\checkmark	(√)
Sr	Cl	К	\checkmark	(√)
Sr	Cl	Mg	-	-
Sr	CI	Са	-	-
Sr	SO4	Na	\checkmark	(√)
Sr	SO4	К	-	-
Sr	SO4	Mg	-	-
Sr	SO4	Ca	-	-
Sr	Cl	SO4	-	-

Source:

T. Scharge, A. G. Munoz, and H. C. Moog: Activity Coefficients of Fission Products in Highly Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl, and SO42-: Sr2+. (in preparation)

Number or processed sources

Element	Number of sources	Number of binary data points	Number of ternary data points
Cs	77	377	830
Rb	51	235	271
Sr	49	147	406
Ρ	249 (111 Na/K) (138 Ca/Mg/H3PO4)	400	1251

High-temperature extensions for Sr, Ba, Ra, Pb - Motivation

- Some interest arose because of modeling of scale formations in geothermal power plants
- Depending on the particular site these scales may contain (Sr, Ba, Ra)-Sulfates/Carbonates, PbSO4 (Anglesite), PbCO3 (Cerussite) or Pb(OH)Cl (Laurionite), Sulfides, or even elemental Pb, Cu.
- Temperatures typically 150-250°C, pressure up 450 bar
- Geothermal power plants already in operation, therefore quick answers required!

Temperature- und Pressure dependence of chemical equilibria

Need to be known for all educts and products

 $\Delta_{\rm r}G(T) = -{\rm R}T\ln K(T)$

- = Primary data which need to be looked for in the literature
- The equilibrium constant In K(T) is an integral quantity which contains H, S, and Cp(T) for all educts and products
- Upon creation of the database basic thermodynamic rules for internal calculation need to be obeyed (internal numerical consistency of data)

Present state and workflow

Polythermal BaSO4-solubility in NaCI-solution

Polythermal SrSO4-solubility in MgCl2-solution

Estimates for Ra (summary)

- Association constant: linear correlation of logK (ion pair) and log (anhydrous sulfate)
- T-dependence of logK (RaSO4(cr)) in analogy to BaSO4(cr)
- T-dependence of Pitzer parameters in analogy to those for BaCl2

Estimate of the association constant for the reaction $Ra<2+> + SO<2-> \rightarrow RaSO4<0>$

CaSO4

MgSO4 SrSO4

BaSO4

RaSO4

Estimate of the temperature dependence of the solubility constant for RaSO4(cr)

logK (RaSO4(cr)): Paige C. R., Kornicker W. A., Hileman O. E. and Snodgrass W. J. (1998) Solution equilibria for uranium ore processing: the BaSO4–H2SO4–H2O system and the RaSO4–H2SO4–H2O system. Geochim. Cosmochim. Acta 62, 15–23.

(T)
.21353
5.9422
43.014
43.014
()

Estimate of the temperature dependence of Pitzer parameters for the binary interaction Ra-Cl

- Adopting the temperature dependence from BaCl2 (MON1999)
- Complying with the exact 298.15K-values from ROS2011

BaCl2							298.15K
Pk-Art	A/T	В	ClnT	DT	ET2	F/T2	
beta0	-1336.53	34.38314	-5.302131	0.0006375	4.6087E-06	0	0.291
beta1	4374.11	-104.2305	15.87517	0.003225	-6.774E-06	0	1.250
cphi	3457.27028	-103.868976	18.156877	-0.03800148	1.3972E-05	-99531.2556	-0.030
RaCl2							
beta0	0	0.248	0	0	0	0	
beta1	0	1.477	0	0	0	0	
cphi	0	-0.023	0	0	0	0	
RaCl2 neu							
beta0	-1336.53	34.340	-5.302131	0.0006375	4.6087E-06	0	0.248
beta1	4374.11	-104.004	15.87517	0.003225	-6.774E-06	0	1.477
cphi	3457.27028	-103.862	18.156877	-0.03800148	1.3972E-05	-99531.2556	-0.023

PP Ra-CI: Yoav O. Rosenberg, Volker Metz, Jiwchar Ganor: Co-precipitation of radium in high ionic strength systems: 1. Thermodynamic properties of the Na–Ra–Cl– SO4–H2O system – Estimating Pitzer parameters for RaCl2. Geochimica et Cosmochimica Acta 75 (2011) 5389–5402.

Polythermal solubility of Ba-Ra-SO4 solid solution and RaSO4 (pure phase)

Application: geothermal site Soultz-sous-Forêt / France

Calculated ratio between Ra-Sulfates and Barite close to the measured value Quite promising, but we need more data on partitioning to support our model!

Now for the lead

- Well-founded database for 298.15K available.
- For PbSO4 and Pb(OH)Cl no temperature-dependent solubility
- However, for PbSO4 standard formation data available
- Speciation of lead relevant

Model for lead in saline solutions

Species
Pb<2+>
PbCl<->
PbCl2<0>
PbCl3<->
PbCl4<2->
Pb(SO4)<0>
Pb(SO4)2<2->
Pb(OH)<+>
Pb(OH)2<0>
Pb(OH)3<->
Pb(CO3)<0>
Pb(CO3)2<2->

Solid phases

Pb(OH)Cl - Laurionit PbSO4(cr) - Anglesit Pb(cr)

Interactions	
Pb<2+>	Cl<->
Pb<2+>	SO4<2->
PbCl<+>	Cl<->
PbCl<+>	SO4<2->
PbCl3<->	Na<+>
PbCl3<->	K<+>
PbCl3<->	Mg<2+>
PbCl3<->	Ca<2+>
PbCl4<2->	Na<+>
PbCl4<2->	K<+>
PbCl4<2->	Mg<2+>
PbCl4<2->	Ca<2+>
Pb(SO4)2<2->	Na<+>
Pb(SO4)2<2->	K<+>
Pb(SO4)2<2->	Mg<2+>
PbCl2<0>	K<+>
PbCl2<0>	Mg<2+>
PbCl2<0>	Ca<2+>
PbCl2<0>	Cl<->
PbCl2<0>	SO4<2->
PbCl4<2->	SO4<2->
PbCl3<->	SO4<2->
PbCl4<2->	SO4<2->
Pb(OH)3<->	Na<+>
Pb(OH)3<->	K<+>

Thermodynamische Eigenschaften des Bleis	
in Lösungen der ozeanischen Salze	
Der Gemeinsamen Naturwassenschaftlichen Fakultüt	
der Technischen Universität Carolo-Wilhelmina	
zu Brausschweig	
Zur Erlangung des Grades eines	
Doktors der Naturnässenschaften	
(De out with)	
(DI. H. IBI.)	
penelumipte	
Dissertation	
Diricitation	
Vos	
Sten Hasemann	
mr Handerberg (Occabethelt)	
aus matoriorig (Osnaorack)	

Solubility of PbSO4(cr) in Na2SO4-solutions (298.15 K)

Solubility of lead in complex salinar solutions (entire diagram: NaCl-saturation)

Estimate for the temperature dependence of complex formation constants

Coefficients used in fitting the stability constants of the lead chloride species with polynomial equations in temperature

Formation reaction	a	ъ	e	d
$Pb^{2+} + Cl^{-} = PbCl^{+}$ $PbCl^{+} + Cl^{-} = PbCl_{2}$ $PbCl_{2} + Cl^{-} = PbCl_{3}^{-}$ $PbCl_{3}^{-} + Cl^{-} = PbCl_{4}^{2-}$	6.710 4.316 4.154 6.111	$\begin{array}{r} -6.355 & 10^{-2} \\ -5.977 \cdot 10^{-4} \\ -1.580 \cdot 10^{-2} \\ -2.674 \cdot 10^{-2} \end{array}$	$2.186 \cdot 10^{-4}$ $2.570 \cdot 10^{-4}$ $0.1051 \cdot 10^{-4}$ $0.2350 \cdot 10^{-4}$	$-2.266 \cdot 10^{-7}$ -3.184 $\cdot 10^{-7}$ -

Quelle: J. O. Nriagu, G. M. Anderson: Stability of the lead (II) chloride complexes at elevated temperatures. Chemical Geology 7 (1971) 171-183.

Example: Speciation of lead in NaCI-solutions – 298.15 and 433.15 K

Estimate of solubility of Anglesite (PbSO4) at elevated temperatures

- Foundation: $\Delta_{\rm f} H$, S^0 und $C_{\rm p}(T)$
- Calculation of $\Delta_{f}G(T)$
- Optimization of $\Delta_f G(T = 298.15 \text{ K})$ for well-known solubilities (ca. + 3kJ/mol)

Solubility of C2AH8 and C4AH13 in low-saline solution

Solubility of SiO2(am) in MgCl2-solution

Conclusion (I)

- **Cs, Rb:** complete set of data for 298.15K
- Ba, Sr: almost complete, but allowing for the calculation of solubilities of relevant solid phases
 - Closer look at solid solutions necessary
 - Data still need to be tested for more systems
- Ra: very few data for solubility, however, solid solution formation with EAsulfates more important
 - We look for more data with regard to partitioning between solid solution and aqueous solution!
- Phosphate: for Na, K HPO4<2->, H2PO4<-> Cl, SO4 complete
 - At present: investigation of low-soluble EA-phosphates
- Cement-phases:
 - Next release for 298.15 K only and mainly covering low-saline conditions
 - One example for equilibria in concentrated MgCl2-solution will be given
 - Overall solubility not much influenced by high salinity

GRS

Conclusion (II)

HEREDA

- Pb: good database for 298.15 K, approximations for elevated temperatures for chloride solutions
 - Applicability to higher pH values still under investigation
 - At present: investigation of data for sulfate-complexation at elevated temperatures and high-temperature solubility of Anglesite
 - No data at higher temperature for Pb(OH)Cl
 - Application of alternative complexation model (Woosley and Millero, 2013) ?
- At present database for the system of oceanic salts for temperatures up to 200°C is updated in THEREDA. Then, some of the systems presented here will be recalculated and, if necessity arises, adjusted.
- Implementation in THEREDA by the end of 2013.

Thank you very much for your attention!

Na2HPO4-NaCI, ternary system, solubility and isoactivity lines

Source:

T. Scharge, A.G. Muñoz and H.C. Moog: Thermodynamic Modeling of High Salinary Phosphate Solutions II. Ternary and higher Systems. J. Chem. Thermodynamics (in preparation).

Erweiterung für höhere Temperaturen des Modells für Blei in hochsalinaren Lösungen (II)

