

GTT Annual Workshop, July 3-5, 2013

Incorporation of P_2O_5 into the oxide core database with AI, Si, Ca and Mg

4. Juli 2013 | <u>Elena Yazhenskikh</u>¹, Klaus Hack², Tatjana Jantzen², Michael Müller¹

¹ Forschungszentrum Jülich, IEK-2 (Microstructure and properties of materials), Germany

² GTT-Technologies, Herzogenrath, Germany

Contents

> Motivation and aim of the work > Models, optimisation, phases under consideration > The binary systems with P_2O_5 : P_2O_5 -CaO, P_2O_5 -MgO systems P_2O_5 -Al₂O₃ system P_2O_5 -SiO₂ system The ternary systems with P_2O_5 P_2O_5 -Al₂O₃-CaO P_2O_5 -SiO₂-Al₂O₃ P_2O_5 -SiO₂-MgO P_2O_5 -SiO₂-CaO > Modelling of α -Ca₂SiO₄ > Modelling of α' -Ca₂SiO₄ >Conclusions and outlook

Motivation and aim of work

State of the art:

- 2-, 3- and multicomponent systems have been thermodynamically assessed using all available experimental data
- ✓ phase diagrams and other thermodynamic properties can be calculated with the obtained self-consistent datasets

✓ P₂O₅ is an essential component for the co-gasification of phytogenic and zoogenic biomass.

- \checkmark The addition of P₂O₅ improves the fluidity of molten slags.
- ✓ The phosphates are of interest in connection with soil-fertilizer relationships.
- ✓ The dephosphorization is important in the iron and steel industry.

Aim of our work:

development of a new data base, which is applicable for the slag relevant system containing oxides of Si, Al, Na, K, Ca, Mg, Fe, P, S, Cr etc. and suitable for the calculations and/or predictions of the phase equilibria and other thermodynamic properties by variation of T and composition

Database development

Modelling of binary P₂O₅-containing phases

The species in the non-ideal associate solution containing P_2O_5 were added in order to describe the liquid phase. Binary solid phases were considered as stoichiometric compounds

System	Associate species in liquid Me _x O _y :P ₂ O ₅	Solid phase	Description of solid phase
CaO-P ₂ O ₅	3:1, 2:1, 1:1 Ca ₃ P ₂ O ₈ , Ca ₂ P ₂ O ₇ , CaP ₂ O ₈ [Serena 2011]	$\begin{array}{l} CaO \cdot 2P_2O_5 \\ 2CaO \cdot 3P_2O_5 \\ CaO \cdot P_2O_5 \\ 2CaO \cdot P_2O_5(s1,s2,s3) \\ 3CaO \cdot P_2O_5(s1,s2,s3) \\ 4CaO \cdot P_2O_5 \end{array}$	stoichiometric stoichiometric stoichiometric stoichiometric stoichiometric stoichiometric
MgO - P ₂ O ₅	3:1, 2:1, 1:1 Mg ₃ P ₂ O ₈ (SGPS), Mg ₂ P ₂ O ₇ , MgP ₂ O ₈	$MgO \cdot P_2O_5$ $2MgO \cdot P_2O_5$ $3MgO \cdot P_2O_5$	stoichiometric stoichiometric stoichiometric
Al ₂ O ₃ -P ₂ O ₅	1:1 AIPO ₄ (SGPS)	$3AI_2O_3 P_2O_5$ AIPO ₄ (s3,s2,s1) AI_2O_3 3P_2O_5	stoichiometric stoichiometric stoichiometric
SiO ₂ -P ₂ O ₅	1:1 SiP ₂ O ₇	$SiO_2 P_2O_5$ $5SiO_2 3P_2O_5$	stoichiometric stoichiometric

CaO-P₂O₅ and MgO-P₂O₅

der Helmholtz-Gemeinschaft

Mitglied

SiO₂-P₂O₅: experimental data

T. Y. Tien and F. A. Hummel, J. Am. Ceram. Soc., 45 [9] 422-424 (1962).

There is not enough experimental data on phase diagrams and compounds. The few data available is contradictory. Hence, experimental studies are needed.

A. E. Mal'shikov and I. A. Bondar, Russ. J. Inorg. Chem. (Engl. Transl.), **33**[1] 109-112 (1988).

G. Baret, R. Madar, and C. Bernard, J. Electrochem. Soc., **138** [9] 2830-2835 (1991).

SiO₂-P₂O₅: calculation

Mitglied der Helmholtz-Gemeinschaft

LICH

Modelling of ternary P₂O₅-containing phases

In all ternary systems there are **no** ternary species, with the exception of the system Al₂O₃-MgO-P₂O₅, where one ternary species Al₂O₃·3MgO·P₂O₅ was incorporated

System*	Solid phase	Description of solid phase
Al ₂ O ₃ -SiO ₂ -P ₂ O ₅	AIPO ₄ _MT AIPO ₄ _HT SiO ₂ _HT SiO ₂ _MT Al ₂ O ₃ ·4SiO ₂ ·3P ₂ O ₅ (no data)	$(AI^{3+}, Si^{4+})(P^{5+}, Si^{4+})(O^{2-})_4$ $(AI^{3+}, Si^{4+})(P^{5+}, Si^{4+})(O^{2-})_4$ $(AI^{3+}, Si^{4+})(P^{5+}, Si^{4+})(O^{2-})_4$ $(AI^{3+}, Si^{4+})(P^{5+}, Si^{4+})(O^{2-})_4$ Stoichiometric
CaO-SiO ₂ -P ₂ O ₅	Ca_2SiO_4 -alpha = $Ca_3P_2O_8$ -alpha prime Ca_2SiO_4 -alpha-prime 7CaO·P_2O_5·2SiO_2 5CaO·P_2O_5·SiO_2	$(Ca^{2+})_3(Ca^{2+},Va)_1(P^{5+},Si^{+4})_2(O^{2-})_8$ $(Ca^{2+})_3(Ca^{2+},Va)_1(P^{5+},Si^{+4})_2(O^{2-})_8$ Stoichiometric Stoichiometric
CaO-MgO-P₂O₅	C3P- beta C3P-alpha C3P-alpha-prime M3P C2P-MT M2P C3M3P2 CMP	$\begin{array}{l} (\underline{Ca}^{2+},\underline{Mg}^{2+})_{3}(P^{5+})_{2}(O^{2-})_{8} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{3}(P^{5+})_{2}(O^{2-})_{8} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{3}(P^{5+})_{2}(O^{2-})_{8} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{2}(P^{5+})_{2}(O^{2-})_{7} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{2}(P^{5+})_{2}(O^{2-})_{7} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{2}(P^{5+})_{2}(O^{2-})_{7} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{3}(\underline{Mg}^{2+})_{3}(P^{5+})_{4}(O^{2-})_{16} \\ (\underline{Ca}^{2+},\underline{Mg}^{2+})_{1}(\underline{Ca}^{2+})_{1}(P^{5+})_{2}(O^{2-})_{7} \end{array}$

*All other systems do not have ternary compound or phases

CaO-Al₂O₃-P₂O₅: isoplethal sections

CaO-Al₂O₃-P₂O₅: liquidus surface

P. E. Stone, E. P. Egan, Jr., and J. R. Lehr, J. Am. Ceram. Soc., 39 [10], (1956), pp. 361-362.

Modelling of AIPO₄-SiO₂ phases

(Al³⁺, Si⁴⁺)(P⁵⁺, Si⁴⁺)(O²⁻)₄

W. F. Horn and F. A. Hummel, Cent. Glass Ceram. Res. Inst. Bull., 26 [1-4] 47-59 (1979).

For each phase, the following reciprocal equation was applied: G(Si:Si:O) + G(AI:P:O) - G(AI:Si:O) - G(Si:P:O) = 0

System	Solid phase	Description of solid phase
Al ₂ O ₃ -SiO ₂ -P ₂ O ₅	AIPO ₄ _MT	(AI ³⁺ , Si ⁴⁺)(P ⁵⁺ , Si ⁴⁺)(O ²⁻) ₄
	AIPO ₄ _HT	(Al ³⁺ , Si ⁴⁺)(P ⁵⁺ , Si ⁴⁺)(O ²⁻) ₄
	SiO ₂ _HT	(Al ³⁺ , Si ⁴⁺)(P ⁵⁺ , Si ⁴⁺)(O ²⁻) ₄
	SiO ₂ _MT	(Al ³⁺ , Si ⁴⁺)(P ⁵⁺ , Si ⁴⁺)(O ²⁻) ₄
	$AI_2O_3 4SiO_2 3P_2O_5$ (no experimental data)	Stoichiometric

Al₂O₃-SiO₂-P₂O₅: calculation

MgO-SiO₂-P₂O₅: isoplethal sections

experiment

20. Dezember 2013

Mitglied der Helmholtz-Gemeinschaft

GTT Annual Workshop, Juli 3-5, 2013

MgO-SiO₂-P₂O₅: liquidus surface

J. Wojciechowska, J. Berak, Rocz. Chem., **33**[1] 21-31 (1959).

There is not enough experimental data on phase diagrams, especially in the P_2O_5 -rich area. The few data available is contradictory. Hence, experimental studies are needed.

CaO-SiO₂-P₂O₅: section Ca₂SiO₄-Ca₃P₂O₈

W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc., 52 [6] 346-347 (1969).

CaO-SiO₂-P₂O₅: modelling of α-Ca₂SiO₄

Previous description:

 α - Ca₂SiO₄ : (<u>Ca</u>²⁺,Cr²⁺,Mg²⁺)₂ (Si⁴⁺) (O²⁻)₄

 α' - Ca₃P₂O₈ : (<u>Ca</u>²⁺,Mg²⁺)₃ (P⁵⁺)₂(O²⁻)₈

The following description was suggested for the phase C2S-C3P:

$(\underline{Ca}^{2+}, Cr^{2+}, Mg^{2+})_3(\underline{Ca}^{2+}, \underline{Va}^0)_1(\underline{P}^{5+}, \underline{Si}^{4+})_2(O^{2-})_8$

For the description of C2S-C3P the following reciprocal equation has been applied: G(Ca:Ca:Si:O) + G(Ca:Va:P:O) - G(Ca:Ca:P:O) - G(Ca:Va:Si:O) = 0

System	Solid phase	Description of solid phase
CaO-SiO ₂ -P ₂ O ₅	Ca_2SiO_4 -alpha = $Ca_3P_2O_8$ -alpha prime Ca_2SiO_4 -alpha-prime $7CaO P_2O_5 2SiO_2$ $5CaO P_2O_5 SiO_2$	$(Ca^{2+})_{3}(Ca^{2+},Va)_{1}(P^{5+},Si^{+4})_{2}(O^{2-})_{8}$ $(Ca^{2+})_{3}(Ca^{2+},Va)_{1}(P^{5+},Si^{+4})_{2}(O^{2-})_{8}$ Stoichiometric Stoichiometric

The phase α –Ca₂SiO₄ in different systems $\sqrt{2}$ JÜLICH

CaO-SiO₂-P₂O₅: section Ca_2SiO_4 -Ca₃P₂O₈ \bigvee JÜLICH

W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc., 52 [6] 346-347 (1969).

CaO-SiO₂-P₂O₅: modelling of α -Ca₂SiO₄

The following description characterises the solubility for MgO, FeO and P₂O₅ in the phase α' -Ca₂SiO₄

C2S-PRIME :

$(\underline{Ca}^{2+}, Fe^{2+}, Mg^{2+})_3(\underline{Ca}^{2+}, Va^0)_1(P^{5+}, \underline{Si}^{4+})_2(O^{2-})_8$

System	Solid phase	Description of solid phase
CaO-SiO ₂ -P ₂ O ₅	Ca_2SiO_4 -alpha = $Ca_3P_2O_8$ -alpha prime	(Ca ²⁺) ₃ (Ca ²⁺ ,Va) ₁ (P ⁵⁺ ,Si ⁺⁴) ₂ (O ²⁻) ₈
	Ca ₂ SiO ₄ -alpha-prime	(Ca ²⁺) ₃ (Ca ²⁺ ,Va) ₁ (P ⁵⁺ ,Si ⁺⁴) ₂ (O ²⁻) ₈
	7CaO P_2O_5 2SiO ₂	Stoichiometric
	5CaO P ₂ O ₅ SiO ₂	Stoichiometric

The phase α' –Ca₂SiO₄ in different systems JÜLICH

22

CaO-SiO₂-P₂O₅: section Ca₂SiO₄-Ca₃P₂O₈

R. W. Nurse, J. H. Welch, W. H. Gutt, J. Chem. Soc., 1077-1083 (1959).

Both phases, α and α' , based on Ca₂SiO₄, are included into the dataset to describe the phase diagram

CaO-SiO₂-P₂O₅: liquidus surface

Conclusions

- The liquid phase in all subsystems was evaluated using non-ideal associate species model (two cations per species).
- ✓ All systems were assessed using experimental phase diagram information.
- ✓ Solid solubility SiO_2 in AIPO₄, and vice versa, was considered.
- ✓ The new models of α -Ca₂SiO₄ and α' -Ca₂SiO₄ were introduced within the transition from α -Ca₂SiO₄ to α' -Ca₃P₂O₈ as well as the solubility of corresponding oxides have been described.

Outlook

✓ Addition of alkalis in the Al_2O_3 -CaO-MgO-SiO₂-P₂O₅ system

✓ Thermodynamic assessment of all combination of 2,3 etc. oxides

On behalf of all co-authors:

Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit!

GTT - TECHNOLOGIES

