Mitglied der Helmholtz-Gemeinschaft

Coupling Gibbs Energy and Viscosity Modelling

12.07.2012 Guixuan Wu, Michael Müller (IEK-2)

Content

- Introduction & Motivation
- Definition of Viscosity
- Structure of Slag
- Viscosity Model
- Optimization Process
- Performance of Viscosity Model
- Conclusions & Outlook

Introduction & Motivation

- Measurement of viscosity is of significant importance, however, it can not supply all data encountered in related industries.
- Modelling of viscosity is a promising approach to solve this problem.

Definition of Viscosity

L. Forsbacka: Doctoral thesis, TKK, 2007.

$$\tau = \frac{F}{A} = \eta \cdot \frac{dv}{d\ell}$$

η : dynamic viscosity, Pa·s

- Viscosity: internal fluid friction
- The fluid is sandwiched between two suspending parallel plates in a liquid.
- The viscosity is described by the shear stress that suppresses the relative movement of the two suspending parallel plates.

12.07.2012

Viscosity Model I

System	Associate Species
SiO ₂	Si ₂ O ₄
Al ₂ O ₃	Al ₂ O ₃
CaO	Ca ₂ O ₂
MgO	Mg ₂ O ₂
SiO ₂ -Al ₂ O ₃	Si ₂ Al ₆ O ₁₃
SiO ₂ -CaO	$CaSiO_3$ and Ca_2SiO_4
SiO ₂ -MgO	SiMgO ₃ and Si ₂ Mg ₄ O ₈
Al ₂ O ₃ -CaO	CaAl ₂ O ₄
Al ₂ O ₃ -MgO	Al ₄ Mg ₂ O ₈
SiO ₂ -Al ₂ O ₃ -CaO	Ca ₂ Si ₄ Al ₄ O ₁₆
SiO ₂ -Al ₂ O ₃ -MgO	Si ₅ Al ₄ Mg ₂ O ₁₈
SiO ₂ -CaO-MgO	
Al ₂ O ₃ -CaO-MgO	
SiO ₂ -Al ₂ O ₃ -CaO-MgO	

 Associate species model is employed to predict the slag structure, which can be presented by the relative concentrations of each associate species.

Viscosity Model II

$$G = \sum_{i} X_{i} \cdot G_{i}^{o} + R \cdot T \cdot \sum_{i} X_{i} \cdot \ln X_{i} + G^{ex}$$

where: subscript i represents i-th associate species in solution; X_i is the mole fraction; G_i^{o} is the Gibbs energy of the pure i-th associate species; G^{ex} is the excess Gibbs energy to summarize all other contributions to the Gibbs energy except for the entropy contribution.

Associated Solution Theory

Viscosity Model III

GactSage"

K. Hack, T. Jantzen: 12th Annual Workshop, GTT, Herzogenrath, 2010.

Viscosity Model IV

Arrhenius model (modified)

$$\ln \eta = \sum_{i=1}^{N} X_{i} \cdot \ln \eta_{i} = X_{SiO_{2}} \cdot \ln \eta_{SiO_{2}} + \sum_{i=1}^{N-1} X_{i} \cdot (A_{i} + \frac{B_{i}}{T})$$

$$\ln \eta_{SiO_2} = [A_{SiO_{2,\,Small}} + A_{SiO_{2,\,Intermediate}} \cdot (X_{SiO_2})^{m} + A_{SiO_{2,\,Iarge}} \cdot (X_{SiO_2})^{n}]$$

$$+\frac{[B_{SiO_{2, small}}+B_{SiO_{2, intermediate}} \cdot (X_{SiO_{2}})^{m} + B_{SiO_{2, large}} \cdot (X_{SiO_{2}})^{n}]}{T}$$

where: X_i is the molar fraction of structural unit i; A_i and B_i are fitting parameters of structural unit i.

T. Nentwig: Doctoral thesis, RWTH Aachen, 2011.

Fig. 3

Q _n -	Associate species			
groups	SiO ₂ -Al ₂ O ₃	SiO ₂ -CaO	SiO ₂ -MgO	
Q ₀	Al ₈ Si ₂ O ₁₆	Ca ₈ Si ₂ O ₁₂	Mg ₈ Si ₂ O ₁₂	
Q ₁	Al ₆ Si ₂ O ₁₃	Ca ₆ Si ₂ O ₁₀	Mg ₆ Si ₂ O ₁₀	
Q ₂	Al ₄ Si ₂ O ₁₀	Ca ₄ Si ₂ O ₈	Mg ₄ Si ₂ O ₈	
Q ₃	Al ₂ Si ₂ O ₇	Ca ₂ Si ₂ O ₆	Mg ₂ Si ₂ O ₆	
Q_4		Si ₂ O ₄		

Optimization Process I

Optimization Process II

	System	No. of available literature	No. of total experimental points	No. of reliable experimental points	
)	SiO ₂	19	326	239	
	Al ₂ O ₃	4	58	36	
	CaO				
	MgO				
	SiO ₂ -Al ₂ O ₃	4	109	73	
	SiO ₂ -CaO	34	518	308	
	SiO ₂ -MgO	4	73	36	
	Al ₂ O ₃ -CaO	22	285	136	
	Al ₂ O ₃ -MgO				
	CaO-MgO				
	SiO ₂ -Al ₂ O ₃ -CaO	82	4226	1964	
	SiO ₂ -Al ₂ O ₃ -MgO	26	1309	379	
	SiO ₂ -CaO-MgO	29	656	262	
	Al ₂ O ₃ -CaO-MgO	4	58	23	
	SiO ₂ -Al ₂ O ₃ -CaO-MgO	91	4913	1430	

Optimization Process III

The influence of **experimental data** and **extrapolation** of other related systems on the optimization of model parameters is assumed to be **equal**. 'Ideal Point Approach' is employed to achieve this goal.

Ideal Point Approach

• Ideal points f⁰:

$$f_i^0 = \frac{1}{N} \cdot \sum_{j=1}^N \left| \ln \eta_{j,\text{cal}} - \ln \eta_{j,\text{exp}} \right|$$

Evaluation function f(x):

$$f(x) = \sqrt{\sum_{i=1}^{N} (f_i(x) - f_i^0)^2}$$

Optimization Process IV

Associate	Arrhenius model parameters			
species	A _i	B _i	m	n
SiO _{2,large}	0.093421	17.4248		44
SiO _{2,intermediate}	9.015518	29.64266	3	
SiO _{2,small} Al ₂ O ₃ CaO	-11.1009	24.04727	·27 :06	
	-8.34598 12.24	12.24506		
	-2.86872	6.34E-07		
MgO	-8.52174	10.69859		
Si ₂ Al ₆ O ₁₃	-36.5656	50.60674		
$CaSiO_3$ Ca_2SiO_4 $SiMgO_3$ $SiMg_2O_4$	-12.5291	19.71572		
	-9.21692	13.32073		
	-15.2726	26.24836		
	-8.04222	10.4456		
CaAl ₂ O ₄	-19.4109	35.71868		
Al ₂ MgO ₄	-5.52128	10.91831		
CaSi ₂ Al ₂ O ₈	-15.4246	40.86163		
Si ₅ Al ₄ Mg ₂ O ₁₈	-24.138	56.37161		

SiO2

14/21

SiO₂-Al₂O₃

Al₂O₃-CaO

SiO₂-Al₂O₃-CaO

Al₂O₃-CaO-MgO

SiO₂-Al₂O₃-CaO-MgO

Conclusion & Outlook

Conclusions:

- A new structurally-based viscosity model has been developed, for fully liquid system SiO₂-Al₂O₃-CaO-MgO and its subsystems.
- A good agreement between experimental data and model predictions within experimental error has been achieved, by using only one set of model parameters.

Outlook:

- Re-optimizing the model parameters of the system SiO₂-Al₂O₃-Na₂O-K₂O (developed by my previous colleague: Thomas Nentwig)
- Combining these two systems to develop the model parameters of the system SiO₂-Al₂O₃-CaO-MgO-Na₂O-K₂O.
- Introducing new components like FeO/Fe₂O₃ and P₂O₅ to form a higher system.
- Measuring viscosity in unknown region to validate the present model.

Mitglied der Helmholtz-Gemeinschaft

Thank you for your attention!