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Aero-Acoustic Levitation - Method
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Aero-Acoustic Levitation - Method
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: 6 Electroacoustic Transducers on 3 Orthogonal Axis (piecoelcetric, 22 kHz, 125 dB) = 3Acoustic Axis

: 3 Position Sensor Lasers (808 nm diode lasers)

: 3 Position Sensitive Detectors = Combination of spectral, spatial and temporal filtering
- Transmission of positions status to the acoustic control system at a rate of 250/sec.

: Gas Jet Assembly (Heated Mullite Gas FlowTube, 5I/min., 500-600°C = laminar gas flow; N,, Ar, Air, O,, ...

: Specimen Injector (Vacuum Chuck)

: 2 240 W cw-CO,-Laser (two-sided sample heating)

: High Speed Video Camera (14-bit image depth, 1000 frames/sec. at a full resolution of 1632 x 1200 pixels
+ long-distance microscope lens (full-screen images of levitated 3 mm diameter samples)

: Exactus pyrometer, 700°C to 3500°C, Spot Size: 0.67 mm, A = 650 nm at measuring distance of 150 mm,
Measuring speed up to 1000 Hz, Accuracy T < 2600°C + 1.5°C or = 0.15% of measured temperature



e 3 orthogonal acoustic axis (3 Standing Waves)
e Control of the position of nodes and anti-nodes in the standing waves depends on intra-axis phase

differences (automatic controlled by the acoustic control system)
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e Control of sample rotation through control of phase differences between the 3 orthogonal acoustic axes
(Torques / Moments on a levitated sample result from inter-axis phase differences)

e Control of sound pressure and frequency

e Control of acoustic forces to induce dynamic oscillation on liquid drop by amplitude modulation of the
acoustic forces = SurfaceTension, Viscosity



Advantages of Aero-Acoustic Levitation

e Crucible-Free, Contactless Method

- No contamination by crucible materials

- Prevention of heterogeneous nucleation (Undercooled & Non-Equilibrium Melts)
- Synthesis of high purity materials

- Synthesis of glasses of compositions with none or little tendency to glass formation

2.
e Direct Access to the Sample Surface

- Direct laser beam heating of the sample

—> Very high temperatures (T > 3000°C)

- Fast heating and cooling of the Sample

—> Fast surface and bulk transport = Equilibrium

- Direct and contactless measurements at sample surface (+ Oberservation)

- Pure, unalterated melt surface (volatile impurities evaporate)

- Examination of surface reactions in an reactive environment (Reactive Gases)

- Acoustic manipulation of the levitated melt along single or all three acoustic axis 2
Surface Tension, Viscosity



Advantages of Aero-Acoustic Levitation

HfO,, T, = 2910°C ALO,, T, = 32@
@y = 9.6@ Density = 3.9 g/cm3




Applications of Aero-Acoustic Leviation

e Determination of thermophysical and thermochemical properties

- Density, Thermal Expansion, Viscosity, Surface Tension, Electrical Conductivity, ...
- Melting Points, Liquidus Temperatures
—> Structural Properties of Levitated Melts (e. g. HT-Raman Spectroscopy)

- Thermo-Optical Properties of Levitated Melts (e.g Emmissivty)
-2 ..

e Materials Science

— Materials with Novel and Unusual Microstructures (Eutectic Mictostructures)
—> Materials Development

- Nucleation and Growth, Dendritic Growth, .... > Crystal Growth

- Phase Transitions in the Liquid and Solid state

—> Glass Formation - New Glass Materials

- Metastable Equilibria, Phase Selection

— Phase Separation in Melts
2 ..



Sample Preparation

| Processing Sequence

— Aluminum oxide

Sinter in air at 960°C for 5 h;
spheres then =95% dense

Cold-press fully synthesized
powder into 50% dense spheres

D,..x = 72 Distance between the Nodes
Wi B T ST ® = % )\ = f(Levitation Gas)
v v v v
Al A M
e —
Melt quickly, and then Levitate and heat by laser
quench in ambient in oxygen, air, or argon

L (o

J. K. R. Weber et al. (1994)

ZrO, Gd,Zr,0, ZrSio,



Al,O, - Cooling Sequenze




Al,O, - Cooling Sequenze

700 ps

Img#. -3138 AcqRes: 960 x 720 Rate: 2600 Exp: 100 ps
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Al,O; Cooling Curves : High Reproducibility
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Al,O; Cooling Curve : High Reproducibility
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Al,O; Microstructures

Levitation Gas : N,

S8k m

Levitation Gas : O, Leviation Gas : Ar



Stinger Experiments

_________________ Melting Temperature

Recalescense : Sample not heated to
Melting Temperature = Stinger-Experiment



Temperatur in °C

Melting Temperatures — Stinger Technique
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Melting Temperatures — Stinger Technique

Img#: -2358 AcqRes: 960 x 720 Rate: 2600 Exp: 20 ps

Touching Surface of Undercooled Al,O, with Ir-Stinger = Rapid Solidification



Nucleation triggered with a Ir-Stinger

40 us from picture to picture



Melting Temperatures — Stinger Technique

2500 — Spontaneous, Initial T = 1550 °C

= Sapphire stinger, Initial Ta = 1920 °C

= |r stinger, Initial Ta= 1790 °C
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Video@ ; Crystallization of undercooled Al,O,, triggered with Iridium-Needle
Video-Frequency = 2600 Hz , Time of Crystallization = 4.6 ms (12 Pictures)
Crystallization-Velocity = 70 cm/Second



Crystallization Rate of Undercooled Al,O,
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Crystallization rate of undercooled, liquid Al,O,
as a function of temperature



Y,Al.O,, YAG
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Phase Diagram Y,0;-Al,0,

Roth, R. S.,Phase EquilibriaDiagrams: PhaseDiagrams for Ceramics,Vol XI.
The American Ceramic Society, Westville, OH, 1995, p. 107.



Y,Al.O,, YAG

Video: slow crystallization of Y;Al:O,,at T = 1200°C
At = 0.48 seconds, frame rate 2600 Hz, sample rotation = 5.3 Hz



Y,Al.O,, YAG

270 picture

t=0.103 sec
Ax =0.15cm
v=15cm/s

Crystallization Rate of Liquid Y;Al:0,, at ~¥1200°C



Y,Al.O,, YAG
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Y;Al.O,, : Different Cooling Conditions




Y;Al:O,, YAG : Microstructure

GHI 23 Apr 2012 20.00 kV

GHI 8 May 2012 20.00 kV




Y,AlLO,, YAG

Out of Equilibrium ?



Y,AlLO,, YAG

Out of Equilibrium ?



Y;AlO,, — Al,O; Eutectic

Undercooling, Recalescence and Crystallization of Y;Al;0,, — Al,O5 Eutectic Composition



Y;AlO,, — Al,O; Eutectic
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High Temperature Phase Transitions

Undercooling, Recalescence and Crystallization of Y,0,
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High Temperature Phase Transitions

——— 1 Rotation, 35 ms

385 us >



Oxygen-Yttrium Phase Diagram

A. Boudene et al. : "Thermochemical Measurements and Assessment of the Phase Diagrams in the System Y-Ba-Cu-0", High Temp. Mater. Sci.
35 (1996) 159-179.

hse | spaceGrowp_ sy fange_— versty | volume
°C g/cm?3 nm?3

Cubic (rt) a3 RT-2326 5.03 1.119230

Hexagonal (ht) P63/mmc 2326-2435 4.90 0.0766



High Temperature Phase Transition
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—> Crystallization of Y, 0, followed by Phase Transition



High Temperature Phase Transitions




Surface Tension and Viscosity

Vibration of a Spherical Droplet:

1:z_l(l—l)(|+2)7/
- 3zm

Frequency [1] :

____pR
TS @) 4

[1] J. W. S. Rayleigh, Proc. Royal Soc. of London, 29, 71-79 (1879)
[2] H. Lamb, Proc. London Math. Society, 13, 51-66 (1881)

Damping [2] :

f = Resonance Frequency

T = Time-Constant

I= 2,3,.. Order Number of the Vibration
(Resonance-Modes)

y = Surface Tension

M = Viscosity

p = Density

R, = Radius of Melt Droplet

m = Mass of Melt Droplet

* Modulation of the Acoustic Forces on Levitated Liquid Drops over the Range of Frequencies where
Resonant Oscillation can be observed = Measuring Resonant Frequencies =2 v

* Induction and Measuring Dynamic Oscillation in Overheated and Undercooled Liquids at very High
Temperature = Observing the Decay of Oscillations 2

Advantage of Aero-Acoustic Levitation = Interference from acoustic forces are small since they can be made

very small compared with the surface tension forces on liquid drops



Manipulation of a Water Droplet




Surface Tension and Viscosity

Position-Sensors on the Control Screen:

1 Sekunde

Relaxation of a Levitated Water Droplet
F=20Hz



Surface Tension and Viscosity

Img#: -2940 AcqRes: 8960 x 720 Rate: 2000 BExp: 1S

Compression by Acoustic Forces Relaxation

Undercooled YAG-Melt (Y;Al.0,,), T, = 1700°C



Surface Tension and Viscosity

Dynamic Oscillation of Liquid Al,O5 at ~1900°C



Surface Tension and Viscosity

Fourier analysis of X-axis sensor data with a levitated 67 mg liquid aluminum oxide sample and
with the output of the X-A transducer

e 95Hz Experiment = Peak at 96.4 Hz close to resonant shape oscillation of the liquid
sample (+ 95 Hz oscillation of the acoustic intensity)

* 96.4 peak is not seen when the modulation is at 100 Hz 2 Modulation with 100 Hz was
not close enough to excite 96.4 Hz Peak = Continuous scan over a range of frequencies



Aero-Acoustic Levitator Demonstration




Thank You Very Much For Your Attention !!!



