Micro-Chemistry Simulation of Al-Alloys with the ClaNG-Model

Olaf Engler, Hydro RDB GTT Workshop, Herzogenrath, 14.09.2011

Micro-Chemistry Simulation of Al-Alloys with the ClaNG-Model

Outline

- Introduction: micro-chemistry simulation of Al-alloys
- The ClaNG-model
- Application example: homogenisation of Al alloy 8006 to improve the recrystallization behaviour

Hydro: a leading integrated aluminium and energy company

(3) OE · 2011-09-14

Hydro: a key player in rolled products

- We operate leading rolling assets, foremost in Europe
 - 6 plants in 4 countries
 - + Alunorf, the world's largest aluminium rolling mill (50%)
 - 2 R&D Centres
- We employ around 4,000
- We ship up to 1 million tonnes per year
 - 77% to customers in Europe
 - 17% market share in Europe¹

1 Estimate based on EAA data

(4) OE · 2011-09-14

We serve a wide range of applications

Litho

 Plain strip and sheet for offset printing plates

Packaging and building

- Plain and lacquered strip for cans and other packaging containers
- Plain and converted foil for flexible packaging and technical applications
- Plain and lacquered strip, sheet and plate for architecture: Facades, roller shutters, etc.

Automotive, heat exchanger and general engineering

- Plain, anodised and cladded strip and sheet for
 - cars, transport and heat exchanger systems
 - general engineering, solar technology and special industry

Industrial production of Al sheet process chain

DC casting homogenisation

hot rolling

breakdown

rolling mill

cold rolling

sexto cold mill

annealing

batch furnace

DC casting

(6)

sheet ingot

OE · 2011-09-14

tandem hot rolling line

Through-Process Modelling

Main metallurgical reactions along the process chain

- **homogenisation:** diffusion, microchemistry (solutes, phases)
- hot rolling: work hardening, softening, texture, microchemistry
- cold rolling: work hardening, texture
- back-annealing: softening, texture

microchemistry

- work hardening
- softening

BMBF Project ClaNG Plus

Duration:

- Start: 01.01.2007
- End: 31.12.2010

Partners

- Hydro Aluminium Rolled Products GmbH, R&D Bonn (project management)
- Institut für Metallkunde und Metallphysik, RWTH Aachen
- GTT-Technologies, Herzogenrath

Workpackages:

- 1. Model development ClaNG (IMM, Hydro)
- 2. Link of ClaNG model to modern multi component thermodynamic data bases (IMM, GTT, Hydro)
- 3. Link of ClaNG model to property models (IMM, Hydro)
- 4. Evaluation of applicability to solidification (IMM, Hydro)
- 5. Full scale trials and characterization (Hydro, IMM)

ClaNG Modell "<u>Cla</u>ssical <u>N</u>ucleation and <u>G</u>rowth" model overview

<u>Goal:</u> determine the precipitation kinetics

classical theories:

- Nucleation: Becker and Döring
- Growth: Zener
- Evolution of precipitate size distributions: continuity equation (*Kampmann and Wagner*)

Decision based on thermodynamic calculations using ChemApp (*GTT Technologies*)

 Data base: Thermotech AITT (8 elements: AI-Cr-Cu-Fe-Mg-Mn-Si-Ti)

developed by L. Löchte (RDB), G. Gottstein (IMM) and M. Schneider (Diss. IMM, 2006), advanced by E. Jannot (Diss. IMM, 2008) and Z.S. Liu (Diss. 2011)

ClaNG Modell "<u>Cla</u>ssical <u>N</u>ucleation and <u>G</u>rowth" model overview

* : performed using *ChemApp* (GTT)

Al alloy AA 8006 (AlFe1.5Mn)

Medium strength foil alloy (semiridgid packaging applications, menue trays, candle lights, ...)

Fin stock

Alloy Designations		Si	Fe	Cu	Mn	Mg	Сг	Ni	Zn
AA	EN ¹⁾	min	min	min	min	min	min	min	min
	(alphanumeric)	max	max	max	max	max	max	max	max
	AL FE 1,5 MN		1,2		0,30				
AA 8006		0,40	2,0	0,30	1,0	0,10			0,10

Recrystallization of AA 8006 Experiments

Experiments

- Alloy: AA 8006 (AlFe1.5Mn0.5)
- as-cast material (DC-cast)
- homogenisation trials
 - L1 (600°C)
 - H1 (480°C)
 - C2 (600°C/500°C)
- water quenching
- cold rolling to 2.0mm (90%)
- back-annealing 200 ... 400°C

Recrystallization of AA 8006 Metallography as-cast / homogenised

Recrystallization of AA 8006 Metallography

el. conductivity / resistivity

	el.Leitf. bei 4,2K	RW bei 4,2K	el.Leitf. bei 293K	RW bei 293K
Probe	$\left[\frac{m}{\Omega mm^2}\right]$	[µΩ.cm]	$\begin{bmatrix} m \\ \Omega mm^2 \end{bmatrix}$	[µ0.cm]
Guss	77.92	1.2833	23.36	4.2805
H1	162.74	0.6145	27.20	3.6767
C2	144.38	0.6926	27.28	3.6655
L1	106.34	0.9404	25.90	3.8614

Recrystallization of AA 8006 Thermodynamic simulation

equilibrium

Scheil

HYDRO

(15) OE · 2011-09-14

Recrystallization of AA 8006 microprobe analysis

	and the	
		46
	51	47,-5
	All Carlos Contractor	the state of the s
	A Contraction	50
		49 - 49 -
ĺ		48
	·····	
	00006122	30 μm

Pos.	Mg	Si	Mn	Fe
46		6,6	1,0	26,1
47		0,1	2,0	21,8
48		0,1	2,5	20,8
49		0,1	2,7	19,8
50				
51				
52		0,1	2,4	21,4
53		0,1	2,1	21,8
54		9,5	1,3	24,7
55		0,2	1,6	17,1
56	0,1	0,1	0,4	

Summary

- Al₃(Fe,Mn): 0.9% Fe/Mn >10:1
- Al₆(Mn,Fe): 4.5% Fe/Mn 4~5:1
- α-Al(Fe,Mn)Si

AA 8006 microprobe / element-maps (H1, 480°C)

AA 8006 microprobe / element-maps (L1, 600°C)

Recrystallization of AA 8006 electrical resistivity

$$\rho_{4.2K} \approx \alpha_{Mn} \cdot c_{Mn}$$

 $\alpha_{Mn}^{4.2K} = 3.7775 \ \mu\Omega \cdot cm / wt\%$

Recrystallization of AA 8006

Thermo-Electric Power (TEP)

	as-cast		homogeni	homogenised		RX 400°C	
	1048	746	747	748	764	765	766
Si	0.106	0.009	0.056	0.107	0.003	0.003	0.003
Fe	0.048	0.048	0.048	0.044	0.002	0.002	0.010
Cu	0.052	0.057	0.046	0.058	0.002	0.002	0.002
Mn	0.214	0.066	0.080	0.135	0.041	0.054	0.054
Mg	0.033	0.004	0.005	0.033	0.002	0.002	0.002
Cr	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Zn	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Ti	0.004	0.004	0.004	0.004	0.004	0.004	0.004
	as-cast	H1	C2	L1	H1	C2	L1

Recrystallization of AA 8006 mechanical properties

Recrystallization of AA 8006 Metallography

cold rolled, back annealed at 400°C (anodised, longitudinal section, 50:1)

Einleitung: ClaNG Modell "<u>Cla</u>ssical <u>N</u>ucleation and <u>G</u>rowth"

Recrystallization of AA 8006 ClaNG simulation constituents (H1)

(24) OE · 2011-09-14

Recrystallization of AA 8006 ClaNG simulation solids & dispersoids (H1)

(25) OE · 2011-09-14

Recrystallization of AA 8006 ClaNG simulation constituents (L1)

Recrystallization of AA 8006 ClaNG simulation solids & dispersoids (L1)

(27) OE · 2011-09-14

Recrystallization of AA 8006 ClaNG simulation constituents (C2)

Recrystallization of AA 8006 ClaNG simulation solids & dispersoids (C2)

Recrystallization of AA 8006 Summary and Conclusions

Homogenisation

- H1 (480°C): massive precipitation of Mn-bearing secondary phases
- C2 (600/500°C): (i) precipitation and re-dissolution of Mn-bearing secondary phases, (ii) precipitation of coarse Mn-bearing dispersoids and/or growth of constituents
- L1 (600°C): precipitation and re-dissolution of Mn-bearing secondary phases

• Rolling + recrystallisation

- H1: high density of fine secondary phases \rightarrow strong inhibition of ReX
- C2: coarse dispersoids \rightarrow minimum inhibition of ReX
- L1: strong supersaturation but "concurrent precipitation" \rightarrow medium inhibition of ReX
- the ClaNG model allows analysing the evolution of microchemistry (solutes, particles) along the process chain of Al-alloys

(30) OE · 2011-09-14

www.hydro.com