

KATHOLIEKE UNIVERSITEIT

Crystallization of oxide melts Phase field model coupled with ChemApp

J. Heulens, B. Blanpain, N. Moelans *Katholieke Universiteit Leuven*

GTT-Technologies Annual Workshop 2011

- Start of PhD project in september 2007
 - Funding by IWT (Innovation Scholarship)
- Currently finishing a PhD in Materials Engineering at Katholieke Universiteit Leuven
 - Promotors: prof. Nele Moelans and prof. Bart Blanpain
 - Most important assessor: prof. Klaus Hack
- Since August 2011: Project Leader at Umicore R&D

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Introduction

• Oxide melt = silicate liquid = metallurgical slag

Problem statement

- Microstructure evolution of metallurgical slags controls many aspects of pyrometallurgical processes
 - e.g. freeze lining, refractory wear, tapping and cooling
- Research goals of the PhD
 - Develop a multiphase and multicomponent model to simulate microstructure evolution in slags
 - Perform *in-situ* high temperature experiments for benchmarking of the simulation

Industrial relevance

- Process slag in contact with furnace refractories
- Freeze lining formed by solidification of process slag
- Tapping slag at high temperature and cooling down

Modeled physical phenomena

- Surface energies of all interfaces
- Interface anisotropy (kinetics or energy)
- Diffusion coefficients (all components in all phases)
- Chemical potentials (all components in all phases)
- Howain the liquid phase
 Acceleration, forced and

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Concepts of phase field modeling

• Diffuse interfaces between different phases can treat arbitrary interface shapes

Equations for microstructure evolution

- System of *p* phases and *c* components
- Phase fields evolve by energy minimization:

$$\frac{\partial \eta_i}{\partial t} = -L \frac{\delta}{\delta \eta_i} \left(\int_V \left(m f_0 + \frac{\kappa}{2} \sum_{r=1}^p \left| \nabla \eta_r \right|^2 + f_{chem} \right) dV \right)$$

- Interfacial energy (Double well and gradient term)
- Chemical energy (Gibbs energies of phases)
- Diffusion equation for every component *k*:

$$\frac{\partial x_k}{\partial t} = \nabla \cdot \left(\sum_{i=1}^p \phi_i \sum_{r=1}^{c-1} M^i_{rk} \nabla \widetilde{\mu}^i_r \right)$$

$$\widetilde{\mu}_r^i = \mu_r^i - \mu_{SiO_2}^i$$

Coupling with thermodynamic database

• Local (volumetric) chemical energy is calculated as:

$$f_{chem} = \sum_{i=1}^{p} \phi_i f^i$$

Equality of diffusion potentials of *c-1* components in *p* phases:

$$\widetilde{\mu}_k^1 = \ldots = \widetilde{\mu}_k^i = \ldots = \widetilde{\mu}_k^p \qquad i = 1 \dots p$$

- Mass balance to link phase concentrations to x_k : $x_k = \sum_{i=1}^p \phi_i x_k^i$ k = 1..c-1
- Set of equations is solved for phase concentrations x_k^i

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Thermodynamic data in the model

- The phase field model uses:
 - Gibbs energies of all phases (solid and liquid)
 - $f_i(x_k, T)$ depends on local composition and temperature
 - 2nd order Taylor expansion for local approximation
 - Diffusion potentials of all components
 - $\mu_k(x_k, T)$ depends on local composition and temperature
 - Second derivative of Gibbs energies
- This data can be calculated using ChemApp
 - Converting *c* chemical potentials into *c*-1 diffusion potentials
 - Carefully assess and use reference states for $\mu_k(x_k, T)$

Local approximation of Gibbs energy

• Gibbs energy of phase *i* is approximated by:

$$\hat{f}^{i} = \sum_{k=1}^{c-1} \left(\frac{A_{kk}^{i}}{2} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right)^{2} + \sum_{l \neq k}^{c-1} A_{kl}^{i} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right) \left(x_{l}^{i} - \hat{x}_{l}^{i} \right) + B_{k}^{i} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right) \right) + C^{i}$$
$$A_{kl}^{i} = \frac{\partial^{2} f^{i}}{\partial x_{k}^{i} \partial x_{l}^{i}} \qquad B_{k}^{i} = \frac{\partial f^{i}}{\partial x_{k}^{i}} = \widetilde{\mu}_{k}^{i} \qquad C^{i} = f^{i}$$

- A, B and C are retrieved by ChemApp and stored in an array to load in the phase field code
 - No link with ChemApp at run-time, but before simulation
- Diffusion potentials are linear in concentrations, which greatly reduces computational effort

Retrieval of thermodynamic data

- Molar Gibbs energy
 - call tqgetr('GM', 0, 0, F, noerr)
- Diffusion potential of CaO (reference SiO₂)
 - G_SiO2_0 and G_CaO_0 (standard states in liquid at certain T)

- call tqgetr('MU', i_liquid, i_SiO2, mu_SiO2, noerr)
 mu_SiO2 = G_SiO2_0 + mu_SiO2
- call tqgetr('MU', i_liquid, i_CaO, mu_CaO, noerr)
 mu_CaO = ((G_CaO_0 + mu_CaO) mu_SiO2)/Vm
- Second derivative of Gibbs energy
 - call tqsetc('IA ', i_liquid, i_CaO, x_CaO±dr, numcon, noerr)
 - $dmu_dCa0 = (mu2-mu1)/(2.d0*dr)/Vm$

Discretization interval ($\Delta = 10E(-X)$)

Gibbs energy of liquid oxide melt

- All phases suspended
- Liquid phase is entered
- Stored in an array with $\Delta = 0.001$ spacing
- Locally approximated with 2nd order Taylor expansion
 - First derivatives
 - Second derivatives

Diffusion potentials in oxide melt

$$\widetilde{\mu}_{Al_2O_3}^{liquid} = \mu_{Al_2O_3}^{liquid} - \mu_{Al_2O_3}^{liquid}$$

Second derivatives of Gibbs energy

KATHOLIEKE UNIVERSITEIT

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Slag specific features of the model

- Coupling with FACT database for oxides
- Many solid stoichiometric phases (e.g. CaO.SiO₂)
 - Artifical Gibbs energy for stoichiometric phase
- Diffusion mobilities matrix **M**
 - No mobility database available
 - Interdiffusion coefficients matrix **D** from literature
 - Thermodynamic factor matrix **G** from ChemApp
- Wide variety of interface anisotropy
 - Faceted growth (strong anisotropy in interface mobility)
 - Dendrite growth (weak anisotropy in interface energy)

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Numerical implementation

- Partial Differential Equations (PDE's) are solved
 - using a finite difference scheme on a square grid
 - using a higher order Laplacian to ensure correct anisotropy
 - using ghost nodes for the boundary conditions
- The program is written in Fortran90
- The code is parallellized using the MPI-2 standard
- All relevant simulations run on a computer cluster
 - Distributed memory architecture (using MPI-2 standard)
 - Mostly 100 cpu's for 5 days for a single simulation
- Numerical efficiency is currently low
 - No adaptive meshing or no advanced solvers are used
- The code is still under scientific development

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Applications of the model

- Dendritic crystallization of a mineral in silicate melt
 - Acta Materialia 59(5), 2156-2165, 2011
- New insights into two-phase ternary diffusion couples
 - Acta Materialia 59(10), 3946-3954, 2011
- Comparison with in-situ experiments
 - Journal of the Eur. Ceramic Society 31(10), 1873-1879, 2011
- Crystallization of a Fe bearing geological melt
 - Chemical Geology, in press, 2011

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Comparison with in-situ experiment

- In-situ experiments of dendritic crystallization of CaSiO₃ in a CaO-Al₂O₃-SiO₂ melt
 - Dendrite tip velocity
- Large-scale phase field simulations incorporating all relevant properties of the solid and liquid phases
 - Except the solid-liquid interfacial energy
- Comparing simulation and experiment
 - High fidelity estimation of the interfacial energy, which is notoriously difficult to measure

Experiment versus simulation

Experiment

Simulation

Estimation of the S-L interfacial energy

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Crystallization of a geological melt

- Oxygen dependent system
 - FeO-Fe₂O₃-SiO₂
- Open system with at least one boundary in contact with O_2 atmosphere (with fixed p_{O2})

- Assumptions made regarding to redox reactions
 - Redox equilibria are locally always in equilibrium
 - Fe^{3+}/Fe^{2+} is a direct measure for local oxygen potential
 - O₂ can only diffuse into the slag by changing the local multivalent composition
- Special boundary condition to preserve Fe but not O

Different nucleation densities

Different oxidizing conditions

- Introduction
- Phase field model
 - Concepts of phase field modeling
 - Thermodynamic data for oxide melts
 - Other specific features for oxide systems
 - Numerical implementation
- Applications of the model
 - Dendritic crystallization of a silicate melt
 - Faceted crystallization of a geological melt
- Conclusions

Conclusions

- Phase field model for crystallization of slags
 - Thermodynamic properties from FACT databases
 - Diffusion properties from literature
 - Arbitrary interface kinetics and anisotropies
- Agreement between simulation and experiment
- Two applications were shown
 - Pyrometallurgy and geology
 - Model proofs to be a succesful tool for microstructure evolutiong in these melts