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Introduction
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 Oxide melt = silicate liquid = metallurgical slag

e Problem statement

— Microstructure evolution of metallurgical slags controls many

aspects of pyrometallurgical processes

* e.g. freeze lining, refractory wear, tapping and cooling

 Research goals of the PhD

— Develop a multiphase and multicomponent model to simulate
microstructure evolution in slags
— Perform in-situ high temperature experiments for benchmarking

of the simulation



Industrial relevance

1IFLISHIAIND IHINOHLYM

* Process slag in contact with furnace refractories
* Freeze lining formed by solidification of process slag

« Tapping slag at high temperature and cooling down




Modeled physical phenomena
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Concepts of phase field modeling
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« Diffuse interfaces between different phases can treat
arbitrary interface shapes
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o System of p phases and ¢ components

* Phase fields evolve by energy m
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Coupling with thermodynamic database
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Local (volumetric) chemical energy is calculated as:

Equality of diffusion potenti_als of c-1 components in p
phases:

Mass balance to link phase concentrations to x;:

:Zp:¢ixli< k=1..c-1

Set of equations is solved for phase concentrations x;/
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Thermodynamic data in the model
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 The phase field model uses:

— Gibbs energies of all phases (solid and liquid)

* f(XT) depends on local composition and temperature

« 2nd order Taylor expansion for local approximation

— Diffusion potentials of all components

* w(x,,T) depends on local composition and temperature

— Second derivative of Gibbs energies

e This data can be calculated using ChemApp
— Converting ¢ chemical potentials into c-1 diffusion potentials

— Carefully assess and use reference states for p,(X,,T)



Local approximation of Gibbs energy

* Gibbs energy of phase i is approximated by:

C C_l - - - - - - - - -
[ (xk_xk)@A&,(x;_gxx;_g;)m;(x&_x'k)jm'
=1 +*

| — - - | — _ = | | — .I: |

Ad OX. O, B, ox. H ¢

« A, B and C are retrieved by ChemApp and stored in an array to
load in the phase field code

— No link with ChemApp at run-time, but before simulation

« Diffusion potentials are linear in concentrations, which greatly
reduces computational effort



Retrieval of thermodynamic data
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 Molar Gibbs energy
— call tqggetr(‘GM’, @, O, F, noerr)

 Diffusion potential of CaO (reference SiO,)

— G_Si02 @ and G_Ca0_@ (standard states in liguid at certain T)

— call tqggetr('MU', i liquid, i Si02, mu_SiO2, noerr)
mu_Si02 = G_Si02 O + mu_SiO2

— call tqggetr('MU', i _liquid, i Ca0, mu_CaO, noerr)
mu Ca0 = ((G_Ca0 @ + mu_CaO) - mu_Si02)/Vm

o Second derivative of Gibbs energy

— call tgsetc('IA ', i liquid, i Ca0, x_CaOzdr,
numcon, noerr)

— dmu_dCa0 = (mu2-mul)/(2.de*dr)/Vm



Second derivative of Gibbs energy
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Gibbs energy of liguid oxide melt
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All phases suspended
Liquid phase is entered

Stored in an array with
A = 0.001 spacing

Locally approximated with
2"d order Taylor
expansion

— First derivatives
— Second derivatives
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Second derivatives of Gibbs energy
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Slag specific features of the model
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Coupling with FACT database for oxides

Many solid stoichiometric phases (e.g. CaO.SiO,)

— Atrtifical Gibbs energy for stoichiometric phase

Diffusion mobilities matrix M

— No mobility database available
— Interdiffusion coefficients matrix D from literature

— Thermodynamic factor matrix G from ChemApp

Wide variety of interface anisotropy

— Faceted growth (strong anisotropy in interface mobility)

— Dendrite growth (weak anisotropy in interface energy)
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Numerical implementation
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Partial Differential Equations (PDE’s) are solved

— using a finite difference scheme on a square grid

— using a higher order Laplacian to ensure correct anisotropy
— using ghost nodes for the boundary conditions

 The program is written in Fortran90
e The code is parallellized using the MPI-2 standard

* All relevant simulations run on a computer cluster

— Distributed memory architecture (using MPI-2 standard)
— Mostly 100 cpu’s for 5 days for a single simulation

* Numerical efficiency is currently low
— No adaptive meshing or no advanced solvers are used

 The code is still under scientific development
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Applications of the model
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« Comparison with in-situ experiments

— Journal of the Eur. Ceramic Society 31(10), 1873-1879, 2011

 Crystallization of a Fe bearing geological melt

— Chemical Geology, in press, 2011
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Comparison with In-situ experiment

* In-situ experiments of dendritic crystallization of
CaSIiO, in a Ca0-Al,0,-SIO, melt
— Dendrite tip velocity

e Large-scale phase field simulations incorporating all
relevant properties of the solid and liquid phases

— Except the solid-liquid interfacial energy

e Comparing simulation and experiment

— High fidelity estimation of the interfacial energy, which is
notoriously difficult to measure



Experiment versus simulation
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Experiment Simulation
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Estimation of the S-L interfacial energy
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Crystallization of a geological melt
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Oxygen dependent system
— FeO-Fe,0,;-SIO,

Open system with at least one boundary in contact with
O, atmosphere (with fixed py,)

Assumptions made regarding to redox reactions

— Redox equilibria are locally always in equilibrium
« Fe3*/ Fe?*is a direct measure for local oxygen potential

« O, can only diffuse into the slag by changing the local multivalent
composition

Special boundary condition to preserve Fe but not O



Different nucleation densities
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Different oxidizing conditions
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Conclusions
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* Phase field model for crystallization of slags
— Thermodynamic properties from FACT databases
— Diffusion properties from literature
— Arbitrary interface kinetics and anisotropies

« Agreement between simulation and experiment

« Two applications were shown

— Pyrometallurgy and geology

— Model proofs to be a succesful tool for microstructure
evolutiong in these melts



