

Coupling WinCast to ChemApp for the calculation of final microstructure distribution

Haritz Sarriegi Etxeberria Ph. D. student

Mondragon Unibertsitatea Mechanical and Manufacturing Department Arrasate-Mondragon, Basque Country, Spain

Annual GTT Workshop September 14-16, 2011

Introduction

Micro+ChemApp Model

Micro+ChemApp

Results

Casting

Simulations

Summary

Outline

- Introduction
- ChemApp coupled microstructure development model for AZ91 Mg alloy
 - D Phase distribution depending on diffusion time
 - □ Al and Zn segregation in solid depending on diffusion time
 - Latent heat release depending on diffusion time
 - □ Solid fraction vs Latent heat
- Casting simulations with WinCast
- Summary and Future work

Annual GTT Workshop September 14 - 16, 2011

Annual GTT Workshop September 14 - 16, 2011

Lipton, J., M. E. Glicksman, and W. Kurz. "Dendritic growth into undercooled alloy melts." Mat. Scie. and Eng. 65.1 (1984): 57-63.

Introduction

Micro+ChemApp

Model

Micro+ChemApp

Results

Casting

Simulations

Summary

Solute Distribution - Diffusion effect in liquid

Concentration [8]

Error function based analytical diffusion equation

$$c = c_0 - c_0 \cdot erf\left(\frac{x}{\sqrt{D \cdot t}}\right)$$

 $D \rightarrow$ Diffusion coef.

- $\mathbf{x} \rightarrow \text{Diffusion length}$
- $t \rightarrow$ Diffusion time

Annual GTT Workshop September 14 - 16, 2011

GOI ESKOLA POLITEKNIKOA ESCUELA POLITECNICA SUPERIOR			A	Z91 N	lg allo	у (Ternary	∕ Mg-Al-Z	n)
	%	Al	Zn	Mn	Si	Cu	Ni	Other	Mg
	AZ91	9	0.42	0.13	0.5	0.1	0.03	max 0.3	Balance
Introduction			-				•	•	
Micro+ChemApp		From 601.75 °C to 433.49 °C							
Model Micro+ChemApp			LIG	UID ·	->	HC	P_A3(α Mg)	
Results		Fro	om 433.49 °C		to		430.13 ℃		
Casting Simulations Summary	I	LIQUID	ID ->		ALMG_GAMMA (Mg ₁₇ Al ₁₂)		IA	+ H (c	CP_A3 x Mg)
			Equilit	orium L	atent	Heat	\rightarrow	442.63	3 J/g
		Scheil L			tent Heat			494.43 J/g	

Introduction

Micro+ChemApp

Model

Micro+ChemApp

Results

Casting

Simulations

Summary

Annual GTT Workshop September 14 - 16, 2011

Phase distribution for a 5 °C/s cooling rate

Diffusion length \rightarrow 1E-7 m Diffusion time \rightarrow 1E-5 s

Introduction

Micro+ChemApp

Model

Micro+ChemApp

Results

Casting

Simulations

Summary

Liquid Fraction variation depending on the diffusion time

Introduction

Micro+ChemApp

Model

Micro+ChemApp

Results

Casting

Simulations

Summary

HCP_A3 (α -Mg) fraction variation depending on the diffusion time

GOI ESKOLA POLITEKNIKOA

ESCUELA POLITÉCNICA SUPERIOR Annual GTT Workshop September 14 - 16, 2011

AIMg-Gamma (Mg12AI17) fraction variation depending on the diffusion time

Diffusion length \rightarrow 1E-7 m

Casting Simulations

Summary

Al segregation in the solid phases

Annual GTT Workshop September 14 - 16, 2011

Zn segregation in the solid phases

GOI ESKOLA POLITEKNIKOA **ESCUELA** POLITÉCNICA

Model

Results

Casting

Simulations

Summary

Latent heat release depending on the diffusion time

Annual GTT Workshop September 14 - 16, 2011

The solid fraction and the heat release fraction are not proportional

Introduction

Micro+ChemApp Model Micro+ChemApp Results Casting

Simulations

Summary

Annual GTT Workshop September 14 - 16, 2011

Gravity Die Casting simulations with WinCast

Summary

Casting material: AZ91 Mg alloy Mould material: GGG40 Melt temperature: 720 °C Mould temperature: 230 °C Filling time: 3 s

Part dimensions:

Each step is 70 mm long by 110 mm wide

8, 12, 20 and 40 mm thick respectively

Introduction Micro+ChemApp

Model

Micro+ChemApp Results

> Casting Simulations

ointalations

Summary

Comparing cooling curves before and after calculating energy release with ChemApp in function of diffusion time

Micro+ChemApp Results

> Casting Simulations

Summary

Annual GTT Workshop September 14 - 16, 2011

Comparing calculated cooling curves to experimental casting curve

Diffusion length \rightarrow 1E-7 m

Time [s]

20

25

30

15

5

0

10

35

Comparing cooling curves before and after calculating energy release with ChemApp in function of cooling rate

Casting Simulations

Summary

Introduction

Micro+ChemApp Model

Micro+ChemApp

Results

Casting

Simulations

Summary

SUMMARY AND FUTURE WORK

• A microstructure growth model has been modelled, supported by Calphad-ChemApp calculations to handle multi-component alloys.

• ChemApp calculates the appearance of phases and their temperature path. Released heat is also computed.

• Unlike diffusion times during calculations result in different amount of the solid phases and heat release, approaching to Scheil solidification (perfect solute mixture in liquid) as the diffusion time increases.

• The temperature where solidification finishes also varies with changing the diffusion time.

- Alloying element segregation is also computed in function of diffusion time.
- It is proved that using Calphad based tools, it is no longer accepted that solid fraction and latent heat release are proportional.

Introduction

- Micro+ChemApp Model
- Micro+ChemApp Results
 - neouno
 - Casting

Simulations

Summary

CONCLUSIONS AND FUTURE WORK

- Casting simulations carried out with WinCast using ChemApp provided heat release data, improve the resulting calculation in comparison to DSC data for latent heat.
- A better description of the primary α -Mg phase and eutectic transformation is also obtained.

• Future work:

- To achive full coupling of the micro-model and ChemApp calculations to WinCast.
- Improve calculations to approach the calculated curves to the experimental ones.

Thank You For your Attention !!

Danke Für Ihre Aufmerksamkeit !!

