

GTT-Technologies, 13th Annual Workshop, September 14-16, 2011

Thermodynamic Assessment of the System Al₂O₃-K₂O-Na₂O-SiO₂-CaO-MgO

Elena Yazhenskikh (1), Klaus Hack (2), Michael Müller (1)

(1) Forschungszentrum Jülich, IEK-2 (Microstructure and properties of materials), Germany(2) GTT-Technologies, Germany

Contents

Motivation and aim of the work
Models and optimisation procedure
Results of re-assessment for binary systems
Assessment for Na₂O-K₂O-Al₂O₃-SiO₂ system
Assessment for K₂O-Al₂O₃-SiO₂+MgO, CaO system
Conclusions and outlook

Motivation and aims

Thermodynamic calculation/prediction for slag relevant oxide systems, which are difficult from the point of view of experimental measurements

Calculation requires:

≻Reliable database, based on the experimental data

➢Software

Available databases are not sufficient to model the complete coal ash (slag) system

Purpose of out work - development of a new data base, which is:

 \checkmark applicable for the slag relevant system containing alumina, silica, alkali, alkali-earth oxides

 \checkmark suitable for the calculations and/or predictions of the phase equilibria and other thermodynamic properties by variation of temperature and composition

Modelling of liquid and solid solutions

Applied and chosen model for the phases under consideration

Phase name	Associate species model	Multi-sublattice model
Liquid	Liquid pure oxides, binary and ternary liquid species	-
Mullite	$Al_6Si_2O_{13}$: $Al_6Si_2O_{13}$ ·1/4, Al_2O_3 , SiO_2 ·2	$(Al^{3+})_1(Al^{3+})_1(Al^{3+}, Si^{4+})_1(O^{2-}, Va)_5$ (Mao et al., 2005)
Na disilicate	$(Na_{1-x}K_x)_2Si_2O_5$: $Na_2Si_2O_5$, $K_2Si_2O_5$	$(Na^{1+}, K^{1+})2(Si^{4+})2(0^{2-})5$
K or Na aluminate		AlkAlO ₂ - low T, high T (Al ³⁺ , Si ⁴⁺) ₁ (K ¹⁺ , Na ¹⁺ Va ⁰) ₁ (O ²⁻) ₂
Nepheline, carnegieite		Nepheline (low T), carnegieite (high T) $(Al^{3+}, Si^{4+})_2 Va^0_{\ 1} (Na^{1+}, Va^0)_1 (O^{2-})_4$
Natrium aluminate		NaAlO ₂ - low T, high T (Al ³⁺ , Si ⁴⁺) ₁ (Na ¹⁺ , Va ⁰) ₁ (O ²⁻) ₂ (Fe is by GTT considered)
K ₂ MgSiO ₄ -SiO ₂		Reciprocal: $(Mg^{2+},Si^{4+})_1(Si^{4+})_1(K^{1+},Va^0)_2(O^{2-})_4$
Beta alumina		$(Na^{1+}, K^{1+})_1 (Al^{3+})_9 (O^{2-})_{14}$
Beta`` alumina		$(Na^{1+}, K^{1+})_1(Al^{3+})_{12}(O^{2-})_{19}$ (Mg is by GTT considered)
Feldspar		$(Na^{1+}, K^{1+})_1 (Al^{3+})_1 (Si^{4+})_3 (O^{2-})_8$

Database development

Results of re-assessment for binary systems-1

Alk₂O-SiO₂, Alk=Na, K 1800 1600 • Morey Kracek △ Loeffler $\overset{\circ}{\mathcal{O}}$ 1400 + Haller Temperature, 1200 1000 800 600 0.2 0.1 0.3 0.9 0.0 0.4 0.5 0.6 0.7 0.8 1.0 mole SiO₂/SiO₂+Na₂O 1800 • Kracek 1600 Temperature, °C 1400 1200 Liquid õ 1000 800 600 0.2 0.3 0.4 0.5 0.0 0.1 0.6 0.7 0.8 0.9 1.0 mole SiO_2/SiO_2+K_2O

Alk₂O-Al₂O₃, Alk=Na, K

Results of re-assessment for binary systems-2

Associate species model (introduced by Spear at al. in 2002): $Al_6Si_2O_{13} \cdot 1/4$, Al_2O_3 , $SiO_2 \cdot 2$

Mullite

0.60 0.62 0.64 0.66 0.68 0.70

✓ Model parameters are optimised for both melting behaviour of mullite

Assessment for ternary system Na₂O-K₂O-SiO₂

Quasi binary section in the Na₂O-K₂O-SiO₂ system

[Belton et al.] G.R. Belton, U.V. Choudary, D.R. Gaskell, Thermodynamics of mixing in molten sodium-potassium silicates, Phys. Chem.Process. Metall., Richardson Conf., (1974), 247-253

Assessment for ternary system K₂O-Al₂O₃-SiO₂

J.F. Schairer, N.L. Bowen, The system $K_2O-Al_2O_3$ -Si O_2 , Am. J. Sci. **253** (1955) 681-746.

R.S. Roth, Phase equilibrium research in portions of the potassium oxidemagnesium oxide-iron (III) oxidealuminium oxide-silicon dioxide system, Adv. Chem. **186** (1980) 391-408

Interacting components $AI_2O_3 - KAISi_2O_6*1/2$ $K_2Si_2O_5*1/2 - KAISi_2O_6*1/2$ $Si_2O_4*1/2 - KAISi_2O_6*1/2$ $AI_6Si_2O_{13}*1/4 - KAISi_2O_6*1/2$ $K_2SiO_3*2/3 - KAISi_2O_6*1/2$ $K_2Si_4O_9*1/3 - KAISi_2O_6*1/2$

Assessment for ternary system Na₂O-Al₂O₃-SiO₂

Results of the assessment for the system NaAlO₂-SiO₂

Feldspar section in the quaternary system $Na_2O-K_2O-Al_2O_3-SiO_2$

 $SiO_2 - KAlSiO_4 - NaAlSiO_4$

Interacting components in liquid NaAlSi₃O₈*2/5 - KAlSi₂O₆*1/2

Schairer, J.F., The alkali-feldspar join in the system NaAlSiO₄-KAlSiO₄-SiO₂, J. Geol. **58** (5) (1950)512-517

Sublattice solution $(Al^{3+})_1(Na^{1+}, K^{1+})_1(Si^{4+})_3(O^{2-})_8$ for feldspar is added.

Ternary system K₂O-MgO-SiO₂

*E.W. Roedder, The system K*₂*O-MgO-SiO*₂, *Am. J. Sci.* **249**(2) (1951) 81-130.

```
\label{eq:1.1} Interacting \ components \ in \ liquid \\ Si_2O_4*1/2 - K_2MgSi_5O_{12}*1/4 \\ MgSiO_3 - K_2MgSiO_4*1/2 \\ MgSiO_3 - K_2MgSi_5O_{12}*1/4 \\ K_2MgSiO_4*1/2 - K_2MgSi_5O_{12}*1/4 \\ Si_2O_4*1/2 - MgSiO_3 - K_2MgSi_5O_{12}*1/4 \\ \end{array}
```

Liquid

•binary associate species K₂O-SiO₂, MgO-K₂O, MgO-SiO₂ are kept

•new ternary species are introduced: (K₂MgSiO₄)/2, (K₂MgSi₅O₁₂)/4

•new interaction parameters between binary and ternary species are added

Solids

binary compounds from K₂O-SiO₂, MgO-K₂O, MgO-SiO₂ are kept
new ternary compounds (K₂MgSiO₄, K₂MgSi₃O₈, K₂MgSi₅O₁₂, K₂Mg₅Si₁₂O₃₀, K₄Mg₂Si₅O₁₄, K₁₀Mg₅Si₁₁O₃₂) are introduced

- reciprocal solid solution $(Mg^{2+},Si^{4+})_1(Si^{4+})_1(K^{1+},Va^0)_2(O^{2-})_4$ is added

Assessment for ternary system K₂O-MgO-SiO₂

Ternary system K₂O-CaO-SiO₂

G.W. Morey, F.C. Kracek, N.L. Bowen, The ternary system K_2O -CaO-SiO₂,J. Soc. Glass Technol. 14 (1930) 149-187.

Interacting components in liquid

$$\begin{split} &K_2 SiO_3 * 2/3 - CaSiO_3 \\ &K_2 SiO_3 * 2/3 - CaO \\ &K_2 O - Ca_2 O_2 \\ &K_2 Si_2 O_5 * 1/2 - CaSiO_3 \\ &K_2 SiO_3 * 2/3 - Ca_2 SiO_4 * 2/3 \\ &K_2 Si_2 O_5 * 1/2 - Si_2 O_4 * 1/2 - CaSiO_3 \end{split}$$

Liquid •binary associate species K₂O-SiO₂, CaO-K₂O, CaO-SiO₂ are kept •new ternary species are introduced: (K₂CaSiO₄)/2

•new interaction parameters between binary and ternary species are added

Solids

•binary compounds from K₂O-SiO₂, CaO-K₂O, CaO-SiO₂ are kept

•new ternary compounds (K₂CaSiO₄, K₄CaSi₃O₉, K₂Ca₂Si₉O₂₁, K₈CaSi₁₀O₂₅,

K₄CaSi₆O₁₅, K₂Ca₂Si₆O₁₅, K₂Ca₃Si₆O₁₆) are introduced

Current results for ternary system K₂O-CaO-SiO₂

Conclusions

The solution data for the binary systems Alk_2O-SiO_2 , $Alk_2O-Al_2O_3$ (Alk=Na, K) and $Al_2O_3-SiO_2$ were re-optimised to accurate description of the phase diagrams taking into account the changes concerning the data on the pure liquid oxides

>Solid and liquid solutions in the ternary systems $Na_2O-K_2O-SiO_2$, $Alk_2O-Al_2O_3-SiO_2$ (Alk=Na, K) and quaternary $Na_2O-K_2O-Al_2O_3-SiO_2$ as well were described using the new database

Sublattice model was successfully applied for the solid solutions in the many-component systems

The ternary systems concerning earth alkali oxides are considered. The corresponding thermodynamic data on the new ternary compounds and the liquid and solid solutions are added in order to calculate the ternary phase diagrams

Outlook

- > Assessment of the system NaAlSiO₄-KAlSiO₂ system
- \triangleright Creation of the database for quaternary solutions with the compositions (Na, K)(Al, Si)O₄ and different structures
- > Alk₂O-MgO-SiO₂ (Alk=Na, K) systems should be finished
- Further "fusion" of the thermodynamic data on earth alkali- and alkali-containing parts of the slag relevant system

