

Plane front directional solidification experiments for thermochemical databases

A. Löffler, H. Engelhardt, M. Rettenmayr Friedrich-Schiller-University Jena Institute of Materials Science and Technology Metallic Materials Department

GTT Workshop 2011

Edit Hel	9 5 6 2					
roject: AlCu Composition Component Al Cu Mg	MgSi.prj (g) Amount 96 4 0.0	Alloy File: / Cooling Method: Const. Cooling Const. Heat Wi Cooling Curve	AlCuMgSi.aly	Abort Calculation Calculation Time Steps: 300		
Fs/-	id (Fs)<->T Ph	ase Fractions<-> Fs Mole id vs. T for Al96 Cu4 [in g]	Fractions<->Sol. Front Pos.(zs)	End Concentrations<->Fs		
1 7			SolKin Preferences	×		
0.9			Base Options Calculation	n Options Diagrams		
0.6			Calculation Type			
0.7			Backdiffusion	C Schel		
0.6			Eutectic Undercooling Pa	Eutectic Undercooling Undercooling Parameter 90 K(s/m)^0.5		
0.5						
0.4			Include Lever Rule	Conc.		
0.3			© Secondary arm sp	acing calculated		
0.2			C Secondary arm sp	acing constant: 40 um		
0.1			Ok Can	cel Help		

microsegregation modeling

input parameters

- composition
- cooling rate (or G_T and v_F)
- physical constants
- phase diagram
 (Calphad thermochemical database)

homogenizing effects

(with respect to Scheil conditions)

- back diffusion
- dendrite arm coarsening
- dendrite tip undercooling
- eutectic undercooling

output parameters

- concentration distribution
- phase fractions
- dendrite arm spacings

- ...

Scheil conditions

- Complete mixing in the melt
 - induce strong convection
- No diffusion in the solid
 - increase diffusion distance

- steep temperature gradient: 10...12 K mm⁻¹
- slow solidification velocity:
 0.2...1 μm s⁻¹
- \rightarrow plane solidification front
- high frequency induction furnace:
- \rightarrow strong melt convection

Plane front directional solidification

Al- 2.2 wt.% Mg

phase separation: Al-Ni

Friedrich-Schiller-Universität Jena

7

use spatial separation of solidifying phases to prepare intermetallic phases

quaternary phase ("Q-phase")

- has not been prepared in larger amounts
- composition, peritectic
 temperature, enthalpy of
 formation are uncertain

technical aluminum cast alloy with Q

prepare θ -Al₂Cu from quaternary melt

determine suitable initial concentrations

Q-phase composition (at%):

	Al 16.8±0.5	Cu 9.1±0.3	Mg 44.3±0.6	Si 29.8±0.3
EDX				
Al ₃ Cu ₂ Mg ₉ Si ₇	14.3	9.5	42.9	33.3
Al ₅ Cu ₂ Mg ₈ Si ₆	23.8	9.5	38.1	28.6
$Al_4Cu_2Mg_8Si_7$	19.0	9.5	38.1	33.3
Al ₄ CuMg ₅ Si ₄	28.6	7.1	35.7	28.6

peritectic temperature was determined by DSC measurement (703°C)

Friedrich-Schiller-Universität Jena

comparison with Scheil calculations

plane front directional solidification with forced convection:

determination of solidification path and tie-lines along the solidification path

selective preparation of intermetallic phases for further investigation

evaluate and improve thermochemical databases

(from: G. Zhao, M. Rettenmayr, J. Crystal Growth, 2005, 279, 540).

Friedrich-Schiller-Universität Jena

Plane front directional solidification

AI- 4 Wt.% Cu- 0.3 Wt.% Fe-0.4 Wt.% IVIN- 0.2 Wt.% SI (exp. values from: G. Zhao, M. Rettenmayr, *J. Crystal Growth*, 2005, **279**, 540).