

GTT-Technologies, 12th Annual Workshop, June 16-18, 2010

# Thermodynamic optimisation of the system Al<sub>2</sub>O<sub>3</sub>-K<sub>2</sub>O-Na<sub>2</sub>O-SiO<sub>2</sub>

Elena Yazhenskikh (1), Klaus Hack (2), Michael Müller (1)

(1) Forschungszentrum Jülich, IEF-2 (Microstructure and properties of materials), Germany(2) GTT-Technologies, Germany



### **Contents**

Motivation and aim of the work
Models and optimisation procedure
Results of re-assessment for binary systems
Assessment for ternary systems
Conclusions and outlook

# **Motivation and aims**



Thermodynamic calculation/prediction for slag relevant oxide systems, which are difficult from the point of view of experimental measurements

Calculation requires: ≻Reliable database, based on the experimental data

➢Software



Available databases are not sufficient to model the complete coal ash (slag) system

Purpose of out work - development of a new data base, which is:

 $\checkmark$  applicable for the slag relevant system containing alumina, silica, alkali, alkali-earth oxides

 $\checkmark$  suitable for the calculations and/or predictions of the phase equilibria and other thermodynamic properties by variation of temperature and composition

# **Modelling of liquid and solid solutions**



Applied and chosen model for the phases under consideration

| Phase name             | Associate species model                                                                       | Multi-sublattice model                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Liquid                 | Liquid pure oxides, binary and ternary liquid species                                         | -                                                                                                                    |
| Mullite                | $Al_6Si_2O_{13}$ : $Al_6Si_2O_{13}$ ·1/4, $Al_2O_3$ , $SiO_2$ ·2                              | $(Al^{3+})_1(Al^{3+})_1(Al^{3+}, Si^{4+})_1(O^{2-}, Va)_5$ (Mao et al., 2005)                                        |
| Natrium disilicate     | $(Na_{1-x}K_x)_2Si_2O_5$ : $Na_2Si_2O_5$ , $K_2Si_2O_5$                                       | -                                                                                                                    |
| Potassium aluminate    | (KAl) <sub>1-x</sub> Si <sub>x</sub> O <sub>2</sub> : KAlO <sub>2</sub> , KAlSiO <sub>4</sub> | KAlO <sub>2</sub> - low T, high T<br>3 sublattices: $(Al^{3+}, Si^{4+})_1(K^{1+}, Va^0)_1(O^{2-})_2$                 |
| Nepheline, carnegieite | NaAlSiO <sub>4</sub> : NaAlSiO <sub>4</sub> , NaAlSi <sub>2</sub> O <sub>6</sub>              | Nepheline (low T), carnegieite (high T)<br>4 sublattices: $(Al^{3+}, Si^{4+})_2 Va^0_1 (Na^{1+}, Va^0)_1 (O^{2-})_4$ |
| Natrium aluminate      | $(NaAl)_{1-x}Si_{x}O_{2}$ : NaAlO <sub>2</sub> , NaAlSiO <sub>4</sub>                         | NaAlO <sub>2</sub> - low T, high T<br>3 sublattices: $(Al^{3+}, Si^{4+})_1 (Na^{1+}, Va^0)_1 (O^{2-})_2$             |



Composition scheme



from AlkAlO<sub>2</sub> to SiO<sub>2</sub>

# **Modelling of liquid – Associate species approach**





$$G_{m} = \sum x_{i}G_{i}^{0} + RT\sum x_{i}lnx_{i} + \sum \sum_{i < j} x_{i}x_{j}\sum_{v} L_{ij}^{(v)}(x_{i} - x_{j})^{v}$$
$$L_{ij}^{(v)} = A_{ij}^{(v)} + B_{ij}^{(v)} \cdot T + C_{ij}^{(v)} \cdot T \cdot lnT + D_{ij}^{(v)} \cdot T^{2} + ..., v = 0, 1$$



## **Database development**

**Experimental data:** phase diagram data, activity data (if they are available)

Choice of the suitable model

Initial data for pure solid and liquid substances, liquid and solid solutions

> ✓ Re-assessment: Gibbs energy for pure oxides were changed from FACT to SGTE Pure Substance database

OptiSage in GactSage"



### **Results of re-assessment for binary systems-1**



Alk<sub>2</sub>O-SiO<sub>2</sub>, Alk=Na, K 1800 • Morey 1600 • Kracek △ Loeffler  $\overset{\circ}{\mathcal{O}}$ 1400 + Haller Temperature, 1200 FACT 1000 800 600 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mole SiO<sub>2</sub>/SiO<sub>2</sub>+Na<sub>2</sub>O 1800 • Kracek 1600  $\overset{\circ}{\mathcal{O}}$ 1400 FACT Temperature, 1200 Liquid 00 Spear 1000 800 600 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 mole  $SiO_2/SiO_2+K_2O$ 

#### Alk<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>, Alk=Na, K



## **Results of re-assessment for binary systems-2**



Associate species model (introduced by Spear at al. in 2002):  $Al_6Si_2O_{13} \cdot 1/4$ ,  $Al_2O_3$ ,  $SiO_2 \cdot 2$ 

4 sublattice model (introduced by Mao et al. in 2005):

Mullite



✓ Model parameters are optimised for both melting behaviour of mullite

# Re-assessment for ternary system Na<sub>2</sub>O-K<sub>2</sub>O-SiO<sub>2</sub> *J*ÜLICH



**Comparison of the calculated isotherms with the experimental points** 



# Re-assessment for ternary system Na<sub>2</sub>O-K<sub>2</sub>O-SiO<sub>2</sub> *J*ÜLICH



Predicted phase fields and ternary points



#### Quasi binary section in the Na<sub>2</sub>O-K<sub>2</sub>O-SiO<sub>2</sub> system





[Belton et al.] G.R. Belton, U.V. Choudary, D.R. Gaskell, Thermodynamics of mixing in molten sodium-potassium silicates, Phys. Chem.Process. Metall., Richardson Conf., (1974), 247-253

# Assessment for ternary system K<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



#### **Predicted phase fields and ternary points**



### Quasi binary sections in the K<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system





## Assessment for ternary system Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>





# Available experimental phase diagram NaAlO<sub>2</sub>-SiO<sub>2</sub> JÜLICH



*J.F. Schairer, N.L. Bowen, The system* Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, Am. J. Sci. **254**(2) (1956) 129-195. Greig J.W., Barth T.F.W., Am.Jour.Sci., 5th ser., **35A**, p.93-112 (1938) Thompson J.G., Melnitchenko A., Palethorpe S.R., Withers R.L., J.Solid State Chem., **131**, p.24-37 (1997) Thompson J.G., Withers R.L., Melnitchenko A., Palethorpe S.R., Acta Cryst., **B54**, p.531-546 (1998)

# **Current results of the assessment for the system** NaAlO<sub>2</sub>-SiO<sub>2</sub>





Problems:

✓ Unknown solubility boundaries for NaAlO<sub>2</sub>
 (low T, high T) solutions
 ✓ Possible presence of a series of solid solutions with different crystallographic structure between NaAlO<sub>2</sub> and NaAlSiO<sub>4</sub>

 $NaAlO_2$  (low T, high T), Nepheline, Carnegieite are represented by sublattice approach. The parameters of the solutions are optimised to obtain good description of the available experimental data.



# Quasi binary sections in the Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system



GTT-Technologies, 12th Annual Workshop, 16-18 June 2010

IÜLICH

FORSCHUNGSZENTRUM



# Conclusions

The solution data for the binary systems  $Alk_2O-SiO_2$ ,  $Alk_2O-Al_2O_3$  (Alk=Na, K) and  $Al_2O_3-SiO_2$ were re-optimised to accurate description of the phase diagrams taking into account the changes concerning the data on the pure liquid oxides

Solid and liquid solutions in the ternary systems  $Na_2O-K_2O-SiO_2$  and  $Alk_2O-Al_2O_3-SiO_2$ (Alk=Na, K) were described using the new database

Sublattice model was successfully applied for the solid solutions in the  $Na_2O-Al_2O_3-SiO_2$  and  $K_2O-Al_2O_3-SiO_2$  systems

## Outlook



- > Assessment of the system  $NaAlSiO_4$ -KAlSiO<sub>4</sub>-SiO<sub>2</sub> system
- $\triangleright$  Creation of the database for possible quaternary solutions, e.g. (Na, K)AlO<sub>2</sub> and (Na, K)(Al, Si)O<sub>4</sub>



Schairer, J.F., The alkali-feldspar join in the system NaAlSiO<sub>4</sub>-KAlSiO<sub>4</sub>-SiO<sub>2</sub>, J. Geol. **58** (5) 512-517

NaAlSiO<sub>4</sub> – KAlSiO<sub>4</sub>



*O.F. Tuttle, J.V. Smith, The nepheline-kalsilite system II. Phase relations Am. J. Sci.* 256 (1958) 571-589



