

Investigations of Degradation Phenomena in High Temperature Discharge Lamps using Thermo chemical Modelling

Torsten Markus and Sarah Fischer

Institute for Energy Research (IEF-2) Forschungszentrum Jülich GmbH 52425 Jülich T.Markus@fz-juelich.de

Content

- Insight into Modern Light Sources
- Corrosion and Chemical Transport
- Calculation Design

Results

Conclusion

PCA-Lamps

PCA = Poly Crystalline Alumina

Aplications for High Intensity Discharge Lamps

Halogen Light

XENON LIGHT

Schematic of a High Pressure Discharge Lamp

IÜLICH Chemical Transport in Ceramic Discharge Metalhalide Lamps (CDM)

Cross Section of a Corroded Discharge Vessel in Horizontal Burning Position (after 9000 h of operation)

Explaination of Transport Phenomena

From data assessment to an application calculation

"Cooperative Transport Model"

R. Gruehn, H.J. Schweitzer, Angew. Chem. 95, 80 (1983)

SimuSage Modelling

Equilibrium reactors

Benuter Admin Transport Gasphase1 AllPhases GasPhase2

Scheme of the transport program

Example: Nal – Cel₃ – Mixture

Comparison between experiments and simulations

 $Nal - Cal_2 - Mixture$

Composition Nal, Cal₂

75% Nal, 25% Cal₂ 50% Nal, 50% Cal₂ 25% Nal, 75% Cal₂

<u>Simulation [mol Al₂O₃]</u>: $1,22 \cdot 10^{-9}$ < $2,55 \cdot 10^{-9}$ < $7,16 \cdot 10^{-9}$

Experimental certification:

 \rightarrow Agreement for Nal – Cal₂ – Mixture

Comparison between experiments and simulations

$Cal_2 - Cel_3 - Mixture$

Com	position	Cal ₂ ,	Cel ₃	
		=	<u> </u>	

90,48%, 9,52% 87,1%, 12,9%

<u>Simulation [mol Al₂O₃]</u>: $5,08 \cdot 10^{-8}$ < $5,58 \cdot 10^{-8}$

Experimental certification:

≈

What causes this difference?

SEM – Analysis with 90,48% Cal₂ and 9,52% Cel₃

Formation of secondary phases

Signal = SE, EHT = 16 kV

 AI_2O_3 ca(s) Cal₂ (liq) AI_2O_3 _cc(s2) Cal_2 ci(s) CeOl_ci(s) $Cel_3_l(liq)$ $Al_2O_3_l(liq)$ $CeAlO_3_ci(s)$ $CeAl_{11}O_{18}$ _ci(s) Cel_3 _ci(s) CeAlO₃_I(liq) $Ce_2Al_2O_6_ci(s)$ $CeAl_{11}O_{18}$ [(liq) $CaAl_4O_7_ci(s)$ $CaAl_2O_4$ _ci(s) Al_l(liq) Al_ci(s) CaO_ci(s) $AII_3_I(liq)$ CeO_2 _ci(s) AI Ce_2O_3 _ci(s)

Calculated Activity

1.0000E+00 9.4561E-01 4.9718E-01 2.4571E-01 1.1649E-01 5.4007E-02 3.5536E-02 2.0447E-02 1.3446E-02 1.1285E-02 5.4999E-03 4.1199E-03 3.4167E-03 3.0990E-03 7.1260E-04 6.7438E-04 4.0705E-04 1.4573E-05 2.7872E-06 1.6025E-06 9.3713E-07 6.0181E-07

Example: Nal – Cal₂ – Cel₃ – Mixture

Experimental Determination of Thermodynamic Data

Differential Thermal Analysis (DTA)

16. Juni 2010

Principle of <u>K</u>nudsen <u>E</u>ffusion <u>M</u>ass <u>Spectrometry</u> (KEMS)

Mass Spectrometer Knudsen Cell System (CH 5) JÜLICH

Potential of Knudsen Effusion Mass Spectrometry

Temperature and Composition dependency of activity for the Nal – Cel₃ system

Phase Diagram of the System Nal–Ce (calculated)

Overview of the data to be optimized in the JÜLICH Nal-Cel₃ system

Various experimental data on the binary Nal-Cel₃ system have been measured:

- phase diagram data (liquidus points, eutectic points)
- liquid-liquid enthalpy of mixing
- activity of Nal(liq) at different temperatures
- OptiSage will be used to optimize the parameters for the liquid Gibbs energy model (XS terms). All other data (G° of the pure stoichiometric solids, as well as the pure liquid components) will be taken from the FACT database (i.e. remain fixed). A polynomial model for the Gibbs energy of the liquid will be used: G = (X₁ G°₁ + X₂ G°₂) + RT(X₁ ln X₁ + X₂ ln X₂) + G^E

where $G^{E} = \Delta H - TS^{E}$ Using the binary excess terms: $\Delta H = X_{1}X_{2} (A_{1}) + X_{1}^{2}X_{2} (B_{1})$ $S^{E} = X_{1}X_{2} (A_{3}) + X_{1}^{2}X_{2} (B_{3})$ Hence: $G^{E} = X_{1}X_{2} (A_{1} - A_{3}T) + X_{1}^{2}X_{2} (B_{1} - B_{3}T)$ Where A_{1}, A_{3}, B_{1} and B_{3} are the 4 parameters to be optimized. G°_{2}

Summary

- Corrosion- and rearrangement effects of the wall material limit the life time of High-Energy-Discharge-Lamps
- Cooperative Transport Model was programmed with SimuSage
- Simulations of the corrosion speed of lamp relevant salt mixtures
- Comparison of the experiments and simulations show remarcable agreement