

Industrial Application of SimuSage for Metallurgical Processes Simulation

Elena Jipnang

Herzogenrath, June 16-18 2010

Table of Contents

- 1. Introduction
 - 1.1 Business areas SMS Siemag
 - 1.2 Goals for new developments
 - 1.3 Steel production routes

2. Primary energy melting

- 2.1 General idea for primary energy melting process
- 2.2 Primary Energy Melting process line
- 2.3 Melting init design
- 2.4 Simulation of 3-stage process

3. Argon Oxygen Decarburization

- 3.1 AOD process
- 3.2 Reaction mechanisms in AOD-converter
- 3.2 Simulation of steam injection

4. Basic Oxygen Furnace

- 4.1 AOD process
- 4.2 Emulsion generation in BOF-converter
- 4.3 Oxidation reactions in BOF-converter
- 4.4 Process simulation with melt bulk mixing

Simulation of 3-step process

Calculation of natural gas and oxygen consumption for the smelting of scrap under given temperature, lambda and combustion efficiency

Simulation of 1-step process

Calculation of natural gas and oxygen consumption for the melting of scrap under given off gas temperature, lambda, combustion efficiency and slagging fraction

Simulation of steam injection

Simulation of steam injection

	Step	O2,Nm3	Ar,Nm3	Steam,Nm3	N2, Nm3	Melt, kg	[C],wt.%	[Si],wt.%	[Cr],wt.%	[Mn],wt.%	[Fe],wt.%	Slag, kg	(Cr),wt.%
	1	240	0	0	240	16988.49070	5.832863854	1.05692910	0	78.20518863	⁻ 14.60178588	80	0
uction	2	240	0	0	240	15828.22119	4.631529495	1.13124548	0	78.32805759	15.66105169	90	0
	3	240	0	0	240	14448.44513	3.293143917	1.23478588	ιο	78.09163619	17.14151114	40	0
	4	240	0	0	240	12737.09520	1.718887620	1.39196956	0	77.20609743	19.42238142	20	0
	5	240	0	0	240	10782.09967	0.118991267	1.51075100	0	75.70921272	22.3771703	2 194.213037	750
	Re	sults ta	able:										
	Inp	out data Step O ₂ , Nm ³	3										
		Ar, Nm ³ Steam, No. Nm ³	Nm ³										
		Ar, Nm ³ Steam, N ₂ , Nm ³	Nm ³										
	Me	Ar, Nm ³ Steam, N ₂ , Nm ³ It outpu Melt, kg [C], wt. ⁹ Si], wt. ⁹	Nm ³ it %		Slag Slag (Cr) (Mn	output g, kg , wt.%), wt.%			Off ga Off g {Mn} {CO	as outpu gas, Nm , vol.% }. vol.%	ut n3		

SMS SIEMAG	SimuSage for Metallurgical Proc	esses Simulation					
SMS group	Oxidation reactions in BOF-converte	er					
	silicon oxidation at the begin of oxygen blowing	[Si] + 2 [O] <=> (SiO ₂)					
Introduction	iron slagging (partly)	[Fe] + [O] <=> (FeO)					
PEM	manganese slagging	[Mn] + [O] <=> (MnO)					
	phosphor burn off	2 [P] + 5 [O] <=> (P ₂ O ₅)					
AOD	slag enrichment with the oxygen	2 (FeO) + [O] <=> (Fe ₂ O ₃)					
BOF	phosphor stabilisation in the slag by the lime	$3 (CaO) + (P_2O_5) \le (CaO)_3 (P_2O_5)$					
	main decarburisation	[C] + [O] <=> {CO}					
	partly post combustion	$\{CO\} + [O] \iff \{CO_2\}$					
	all reaction with [O] can also proceed with $^{1\!/}_{2}$ {O_2}	from gas phase					

SMS SIEMAG

SimuSage for Metallurgical Processes Simulation

Process simulation with melt bulk mixing

