Progress in data assessments for HotVegas project

GTT, 12th Annual Workshop, Herzogenrath, 16-18. Juni 2010

Klaus Hack, Tatjana Jantzen

Contents of presentation

- Introduction
- Behaviour of Spinel in Al₂O₃-CaO-MgO-SiO₂
- Ternary subsystems
- <u>Quaternary system</u>: Modelling of Melilite
- <u>Quaternary system</u>: Calculations and experiment
- Conclusions

Introduction

GTT-Technologies

The oxide system relevant to fuel ashes and slags which is suitable both for applications in the coal burning and in the gasification processes is treated.

Alkali and alkaline earth metal oxides as well as Al_2O_3 and SiO_2 form the material base: $\rightarrow Na_2O-K_2O-CaO-MgO-Al_2O_3-SiO_2$

> $CaO-MgO-Al_2O_3-SiO_2$ (GTT) $Na_2O-K_2O-Al_2O_3-SiO_2$ (FZ Jülich)

Introduction

GTT-Technologies

The associate species model was applied to the thermodynamic description of the liquid phase in the AI_2O_3 -CaO-MgO-SiO₂ system.

System	Associate species
Al ₂ O ₃ -CaO	Al ₂ CaO ₄
Al ₂ O ₃ -MgO	-
Al ₂ O ₃ -SiO ₂	Al ₆ Si ₂ O ₁₃
CaO-MgO	_
CaO-SiO ₂	CaSiO₃ Ca₂SiO₄
MgO-SiO ₂	MgSiO₃ Mg₂SiO₄
Al ₂ O ₃ -CaO-MgO	_
Al ₂ O ₃ -CaO-SiO ₂	Al₄Ca₂Si₄O ₁₆
Al ₂ O ₃ -MgO-SiO ₂	Al ₄ Mg ₂ Si ₅ O ₁₈
CaO-MgO-SiO ₂	-

Behaviour of Spinel in Al₂O₃-CaO-MgO-SiO₂

GTT-Technologies

E. F. Osborn, R.C. DeVries, K.H. Gee, H.M. Kraner, Trans. Am. Inst. MIn., Metall. Pet. Eng., 200, (1954), pp.33-45.

Behaviour of Spinel in Al₂O₃-CaO-MgO-SiO₂

GTT-Technologies

E.C. DeWys, W.R. Forster, Mineral. Mag., 31 [240], (1958), pp.736-743.

G

Behaviour of Spinel in Al₂O₃-CaO-MgO-SiO₂

Reassessment of Spinel in Al₂O₃-MgO

Comparison of databases

Isothermal sections in Al₂O₃-CaO-MgO

Liquidus surface in Al₂O₃-CaO-MgO

GTT-Technologies

A.J. Majumdar, Trans.Br.Ceram.Soc., 63[7], (1964), pp. 347-364.

Liquidus surface in Al₂O₃-CaO-SiO₂

Isothermal sections in Al₂O₃-CaO-SiO₂

Isopleth section Anorthite - SiO₂

GTT-Technologies

J.F. Schairer, N:I. Bowen, Bull.Comm.Geol.finl., 20 (1947), pp.67-87.

Isopleth section Anorthite - Gehlenite

GTT-Technologies

G.A. Rankin, F.E. Wright, Am.J.Sci., 189[39], (1915), pp.1-79.

Modelling of Cordierite and Sapphirine in Al₂O₃-MgO-SiO₂ system : Motivation

Modelling of Cordierite and Sapphirine

GTT-Technologies

 $AI_4Mg_2Si_5O_{18}$

Cordierite : $(AI_2Mg_2Si_5O_{18})^{6-}$ (<u>AI</u>³⁺, Mg²⁺) (<u>AI</u>³⁺, Si⁴⁺)

For the description of Cordierite and Sapphirine the reciprocal equation was applied:

G(AI:AI) + G(Mg:Si) - G(Mg:AI) - G(AI:Si) = 0

 $AI_{18}Mg_{7}Si_{3}O_{40}$ Sapphirine : $(AI_{36}Mg_{14}Si_{3}O_{80})^{12-}(AI^{3+}, \underline{Si}^{4+})_{3}(AI^{3+}, \underline{Va})$

Isothermal section at 1350 °C

Isothermal section at 1450 °C

Liquidus surface in Al₂O₃-MgO-SiO₂

GTT-Technologies

E.F. Osborn, A. Muan, private communication, (1960).

Isopleth section Cordierite - SiO₂

Isothermal section at 1350°C

Liquidus surface in CaO-MgO-SiO₂

Metasilicate section CaSiO₃-MgSiO₃

Orthosilicate section Ca₂SiO₄-Mg₂SiO₄

Isopleth section Ca₂SiO₄ - Åkermanite

GTT-Technologies

E.F. Osborn, J. Am. Ceram. Soc., 26, (1943), pp.321-332.

Isopleth section CaSiO₃ - Åkermanite

GTT-Technologies

.

J.F. Schairer, N.L. Bowen, Am.J. Sci., 240[10], (1942), pp.725-742.

Quaternary system: Modelling of Melilite

GTT-Technologies

Melilite refers to a mineral of the melilite group. Minerals of the group are solid solutions of several endmembers, the most important are **Gehlenite** and Åkermanite. A generalised formula for common melilite is **(CaNa)2(AIMgFe2+)[(AISi)SiO₇].**

Discovered in 1793 near Rome, it has a yellowish, greenish brown colour.

The name derives from the Greek words meli (μέλι) "honey" and lithos (λίθους) "stone".

Gehlenite and Åkermanite

GTT-Technologies

Gehlenite, (Ca2Al[AlSiO7]), is a sorosilicate, Al-rich endmember of the melilite complete solid solution series with akermanite. It is named after Adolf Ferdinand Gehlen.

Åkermanite (Ca2Mg[Si2O7]) is a melilite mineral of the sorosilicate group. The mineral is named for Anders Richard Åkerman, a Swedish metallurgist.

Thermodynamic description of Melilite

GTT-Technologies

Formula given in crystallographic atlas is (CaNa)2(AIMgFe2+)[(AISi)SiO₇].

<u>Thermodynamic description of melilite</u>: (Al³⁺,Mg²⁺)(Al³⁺,Si⁴⁺)(Ca₂SiO₇⁶⁻)

(Al³⁺)(Al³⁺)(Ca₂SiO₇⁶⁻) - Gehlenite

(Mg²⁺)(Si⁴⁺)(Ca₂SiO₇⁶⁻) - Åkermanite

GTT-Technologies

W.K. Gummer, J. Geol., 51 [8], (1943), pp.503-531.

Quaternary system: 10 mass.% Al₂O₃

GTT-Technologies

E. F. Osborn, R.C. DeVries, K.H. Gee, H.M. Kraner, Trans. Am. Inst. Mln., Metall. Pet. Eng., 200, (1954), pp.33-45.

CaO - MgO - SiO₂ - Al₂O₃

Quaternary system: 15 mass.% Al₂O₃

GTT-Technologies

E. F. Osborn, R.C. DeVries, K.H. Gee, H.M. Kraner, Trans. Am. Inst. Mln., Metall. Pet. Eng., 200, (1954), pp.33-45.

Fig. 3.319.

Quaternary system: 5 mass.% MgO

Quaternary system: 10 mass.% MgO

GTT-Technologies

R.C. DeVries, E.F. Osborn, J. Ceram. Soc., 40[1], (1957), pp.6-15

GTT-Technologies

E.F. Osborn, Am. J. Sci., 240 [11], (1942), Al₂CaSi₂O₈ - CaMgSi₂O₆ - CaSiO₃ pp. 751-788. **Gact**Sage[™] Projection (Slag) Al, CaSi, O, Ca0 Al203 25i02 (Anorthite) 1550 (1553*) 1520-80/ 20 1490 460 ۵30 1400 60 40 Anorthite 1370 Anorthite 1340 1307 1310 1280 1274 245° 1236 60 `13₁₀ 4-1250 13-0 40 1300 Diopside 'a30 80 20 α CaO SiO2 1460 Clinopyroxene 1890 Pseudowollastonite ÷Fo VvvVvvVvv V V V V V V V V V V 80 1368" 40 -1358 20 CaO Mg0 25i02 CaO SiO2 60 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 CaSiO₃ CaMgSi₂O₆ (Diopside) (1391.5*) (Pseudowollastonite, Wollastonite) mass fraction (1544°)

Conclusions

- All binary and ternary subsystems were evaluated using associate species model for the liquid phase.
- The binary Al₂O₃-MgO Spinel phase was re-optimised according to the available experimental data for the Al₂O₃-CaO-MgO-SiO₂ system.
- Cordierite Al₄Mg₂Si₅O₁₈ and Sapphirine Al₁₈Mg₇Si₃O₄₀ phases are described as solid solution phases because of experimentally determined wide solubility ranges.
- The quaternary Q-Phase Al₈Ca₆MgSiO₂₁ is involved.
- Melilite phase is present as quaternary solid solution phase with end members Åkermanite and Gehlenite.

- Complete database for the Al₂O₃-CaO-K₂O-Na₂O-MgO-SiO₂ system combining the following databases: CaO-MgO-Al₂O₃-SiO₂ (GTT) and Na₂O-K₂O-Al₂O₃-SiO₂ (FZ Jülich)
- Expansion of the database by addition of such oxides as FeO and Fe₂O₃.

GTT-Technologies

Thank you for your attention!

