PHASE FIELD MODELING OF ISOTHERMAL SLAG CRYSTALLIZATION

J. Heulens, N. Moelans, B. Blanpain

Department of Metallurgy and Materials Engineering Katholieke Universiteit Leuven Kasteelpark Arenberg 44 – box 2450 B-3001 Heverlee (BELGIUM)

GTT - TECHNOLOGIES

12th Annual GTT-Technologies Workshop, June 16-18, 2010

Outline

Introduction

- Research framework and organization
- Concepts of phase field modeling
- Slag specific properties in the model
 - Thermodynamic data
 - Stoichiometric phases
 - Facet interfaces
 - Redox equilibria
- Case studies (simulation results)

Conclusions

Outline

Introduction

- Research framework and organization
- Concepts of phase field modeling
- Slag specific properties in the model
 - Thermodynamic data
 - Stoichiometric phases
 - Facet interfaces
 - Redox equilibria
- Case studies (simulation results)
- Conclusions

3

research

Problem statement

 Microstructure evolution of metallurgical slags controls many aspects of pyrometallurgical processes

e.g. freeze lining, refractory wear, tapping and cooling

Goals

- Develop a multiphase and multicomponent model to simulate microstructure evolution in slags
- Perform necessary high temperature experiments
 - ... to compare with the model
 - to supply data for the model

Microstructure evolution in slags

- Process slag in contact with furnace refractories
- Freeze lining formed by solidification of process slag
- Tapping slag at high temperature and cooling down

5

Microstructure evolution in slags

- Process slag in contact with furnace refractories
 Freeze lining formed by solidification of process slag
- Tapping slag at high temperature and cooling down

Microstructure evolution in slags

- Process slag in contact with furnace refractories
 Freeze lining formed by solidification of process slag
- Tapping slag at high temperature and cooling down

Organization of the research

Modeled physical phenomena

Investigated slag systems

CaO-Al₂O₃-SiO₂

- 4-component system
 - Ca-Al-Si-O
- 3-component if
 oxides are assumed
 to diffuse
 - CaO
 - $\square Al_2O_3$

 \Box SiO₂

FeO-Fe₂O₃-SiO₂

- 3-component system
 - Fe-Si-O
- Transition to FeO and Fe₂O₃ to study redox
 - FeO (Fe²⁺)
 - Fe_2O_3 (Fe³⁺)

□ SiO₂

ndependent centre CRA ~ FeO/Fe₂O3/10/2011

Outline

- Introduction
 - Research framework and organization
- Concepts of phase field modeling
- Slag specific properties in the model
 - Thermodynamic data
 - Stoichiometric phases
 - Facet interfaces
 - Redox equilibria
- Case studies (simulation results)
- Conclusions

Concepts of phase field modeling

Diffuse interfaces between different phases can treat arbitrary interface shapes

Microstructural evolution

- System of *p* phases and *c* components
- Phase fields evolve by energy minimization:

$$\frac{\partial \eta_i}{\partial t} = -L \frac{\delta}{\delta \eta_i} \left(\int_V \left(\frac{mf_0 + \frac{K}{2} \sum_{r=1}^p |\nabla \eta_r|^2}{2 \sum_{r=1}^p |\nabla \eta_r|^2} + \frac{f_{chem}}{2} \right) dV \right)$$

- Interfacial energy (Double well and gradient term)
- Chemical energy (Gibbs energies of phases)

Diffusion equation for every component: $\frac{\partial x_k}{\partial t} = \nabla \cdot \left(\sum_{i=1}^p \phi_i \sum_{r=1}^{c-1} M_{rk}^i \nabla \widetilde{\mu}_r^i \right) \qquad \widetilde{\mu}_r^i = \mu_r^i - \mu_{SiO_2}^i$

Thermodynamic equilibrium

□ Local (volumetric) chemical energy is calculated as:

$$f_{chem} = \sum_{i=1}^{p} \phi_{i} f^{i}$$

$$\Box \quad \text{Equality of diffusion potentials of c-1 components in p} \\ \text{phases:} \quad \widetilde{\mu}_{1}^{i} = \ldots = \widetilde{\mu}_{k}^{i} = \ldots = \widetilde{\mu}_{c-1}^{i} \qquad i = 1 \dots p$$

• Mass balance to link phase concentrations to
$$x_k$$
:
 $x_k = \sum_{i=1}^{k} \phi_i x_k^i$ $k = 1...c-1$

3(6).2006

14

Set of equations is solved for phase concentrations x_kⁱ Kim SG, Kim WT, Suzuki T, Physical Review E 60(6),

Eiken J, Bottger B, Steinbach I, Physical Review E

Outline

Introduction

- Research framework and organization
- Concepts of phase field modeling
- Slag specific properties in the model
 - Thermodynamic data
 - Stoichiometric phases
 - Facet interfaces
 - Redox equilibria
- Case studies (simulation results)

Conclusions

15

Thermodynamic data of slags

The phase field model uses:

Gibbs energies of all phases (solid and liquid)

- $f_i(x_k, T)$ depends on local composition and temperature
- 2nd order Taylor expansion for local approximation
- Diffusion potentials of all components
 - µ_k(x_k,T) depends on local composition and temperature
- Second derivative of Gibbs energies
- This data can be calculated using ChemApp
 - Converting c chemical potentials into c-1 diffusion potentials
 - Carefully assess and use reference states for

2nd order Taylor approximation

□ Gibbs energy of phase *i* is approximated by:

$$\hat{f}^{i} = \sum_{k=1}^{c-1} \left(\frac{A_{kk}^{i}}{2} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right) + \sum_{l \neq k}^{c-1} A_{kl}^{i} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right) \left(x_{l}^{i} - \hat{x}_{l}^{i} \right) + B_{k}^{i} \left(x_{k}^{i} - \hat{x}_{k}^{i} \right) \right) + C^{i}$$
$$A_{kl}^{i} = \frac{\partial^{2} f^{i}}{\partial x_{k}^{i} \partial x_{l}^{i}} \qquad B_{k}^{i} = \frac{\partial f^{i}}{\partial x_{k}^{i}} = \tilde{\mu}_{k}^{i} \qquad C^{i} = f^{i}$$

- A, B and C are retrieved by ChemApp and stored in an array to load in the phase field code
- Diffusion potentials are linear in concentrations, which greatly reduces

computational effort

ChemApp calls (liquid phase)

Gibbs energy

- call tqgetr('GM', 0, 0, F, noerr)
- Diffusion potential of CaO
 - □ G_SiO2_0 and G_CaO_0 (standard states in liquid at certain T)
 - call tqgetr('MU', i_liquid, i_SiO2, mu_SiO2, noerr)
 mu_SiO2 = G_SiO2_0 + mu_SiO2
 - call tqgetr('MU', i_liquid, i_CaO, mu_CaO, noerr)
 mu_CaO = ((G_CaO_0 + mu_CaO) mu_SiO2)/Vm

Second derivative of Gibbs energy

- call tqsetc('IA ', i_liquid, i_CaO, x_CaO±dr, numcon, noerr)
- dmu_dCaO = (mu2-mu1)/(2.d0*dr)/Vm

Numerical determination of $d\mu/dx$

Gibbs energy of liquid

- All phases
- suspended
- Liquid phase is entered
- Stored in an array with $\Delta = 0.001$ spacing
- Locally approximated with 2nd order Taylor expansion

First derivatives

econd derivati

.3/10/2011

Diffusion potentials in liquid

$$\widetilde{\mu}_{CaO}^{liquid} = \mu_{CaO}^{liquid} - \mu_{SiO_2}^{liquid}$$

$$\widetilde{\mu}_{Al_2O_3}^{liquid} = \mu_{Al_2O_3}^{liquid} - \mu_{Al_2O_3}^{liquid}$$

3/10/2011

OCCOUNT ACTIVATIVE OF CINES

energy

Stoichiometric phases in slags

version)

 Kinetic coefficients in diffusion equations can be determined by literature data and ChemApp
 Diffusion equation for component *k*:

$$\frac{\partial x_k}{\partial t} = \nabla \cdot \left(\sum_{i=1}^p \phi_i \sum_{r=1}^{k-1} M_{rk}^i \nabla \widetilde{\mu}_r^i \right)$$

M matrix relates to interdiffusion matrix **D**:

Resulting M matrix for the model can now be calculated

26

3/10/2011


```
cations
```

Oxygen dependent system

• $FeO-Fe_2O_3-SiO_2$

not O

- □ Open systems with at least one boundary in contact with O_2 atmosphere (with fixed p_{O2})
- Assumptions made regarding to redox reactions
 - Redox equilibria are locally always in equilibrium
 - Fe³⁺ / Fe²⁺ is a direct measure for local oxygen potential
 - O₂ can only diffuse into the slag by changing the local multivalent composition
- Special boundary condition to preserve Fe but

(1500°C)

Faceted growth of minerals

Conditions for a faceted interface:

- Interface controlled growth (diffusion is faster)
- Interface mobility is heavily dependent on orientation

 Tanh type function has physical meaning Uchara T, Sekerka RF, Journal of Crystal Growth 254,
 (Burton-Carbrergo Frank)
 3/10/2011

Outline

Introduction

- Research framework and organization
- Concepts of phase field modeling
- Slag specific properties in the model
 - Thermodynamic data
 - Stoichiometric phases
 - Facet interfaces
 - Redox equilibria
- Case studies (simulation results)
- Conclusions

31

Isothermal mineral crystallization

Ternary diffusion paths in slags

1400°

□ Initial slag is in equilibrium with $p_{O2} = 2.4E-5$ □ Upper boundary has $p_{O2} = 1.5E-3$

Conclusions

- Phase field model linked with FACT database
 - Gibbs energies and diffusion potentials are retrieved

 - Faceted growth with cusp function in mobility
- Case studies of simulations
 - Mineral growth and diffusion path calculations
 - Stoichiometric phase in contact with liquid
 - Mineral growing with varying oxygen potential

Two competing diffusion fields

36 Isothermal mineral statication in liquid is 10/2011