Measurement and Simulation of Surface Tension of Liquid NiCr alloys

M.Schick¹, I.Egry¹, W. Khan ^{1,2}, K. Hack²

¹Institut für Materialphysik im Weltraum, DLR, Köln ²Gesellschaft für Technische Thermochemie und -Physik GmbH, Herzogenrath

Deutsches Zentrum für Luft- und Raumfahrt e. in der Helmholtz-Gemeinschaft

Motivation:

Thermophysical properties: density, surface tension, viscosity

- Important quantities in steelmaking (casting processes)
- Important input parameters for simulation of e.g. casting processes
- Aim of the project: Development of a software able to calculate surface tensions of multicomponent metallic alloys, creation of a database containing thermophysical data

Electromagnetic Levitation - Oscillating Drop

levitated liquid drop

G

Electromagnetic Levitation - Oscillating Drop

oscillating spherical force-free liquid drop¹:

$$\omega_l^2 = l(l-1)(l+2)\frac{\sigma}{\rho R^3}$$

levitation experiments: *I* = 2

$$\Rightarrow \qquad \omega_2^2 = \omega_R^2 = \frac{8\sigma}{\rho R^3}$$

Rayleigh formula

under terrestrial conditions: drop is not force-free !

 $\omega_{\!_R}$ Rayleigh frequency

 σ surface tension

- *R* radius of the liquid sample
- ρ density of liquid sample (temperature dependent)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

¹J.W.S. Rayleigh , Proc. Roy. Soc. 29 (1873) 71

G

Electromagnetic Levitation - Oscillating Drop

correction of Cummings and Blackburn², sum rule:

$$\omega_{R}^{2} = \frac{1}{5} \sum_{i=-2}^{2} \omega_{i,2}^{2} - \overline{\omega_{\tau}^{2}} \left(1.90 + 1.2 \frac{g^{2}}{4 \left(\overline{\omega_{\tau}^{2}} \right)^{2} R^{2}} \right)$$

Rayleigh frequency ω_R splits up into 5 not degenerated frequencies:

$$\overline{\omega_{osc}^{2}} = \frac{1}{5} \sum_{i=-2}^{2} \omega_{i,n}^{2} = \left(\omega_{0}^{2} + \omega_{-1}^{2} + \omega_{1}^{2} + \omega_{-2}^{2} + \omega_{2}^{2}\right)$$

 $\overline{\omega_{\tau}^{2}} = \frac{1}{3} \left(\omega_{\tau x}^{2} + \omega_{\tau y}^{2} + \omega_{\tau z}^{2} \right) \text{ mean square translation frequency}$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

²D.L. Cummings, D.A. Blackburn, J.Fluid. Mech. **224** (1991) 395

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Model system for steels: FeNiCr

Calculated melting temperatures:

Cr rich side (left):

1910

1840

1740

T/°C

- high melting temperatures
- strong evaporation of Cr (large exp. error)
- $^{1440} \Rightarrow$ started with binary
- 1340 alloys

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR

in der Helmholtz-Gemeinschaft

Surface Tension – Example: NiCr

X	σ_{T}	$\sigma_{\scriptscriptstyle L}$	T
Ni _x Cr _{100-x}	$/10^{-4} N \cdot m^{-1} \cdot K^{-1}$	$/N \cdot m^{-1}$	/ K
0*3	-3.20	1.7000	2180
10			
20			
30	-3.42	1.8071	1808
40	-4.30	1.8645	1683
50	-3.91	1.8471	1631
60	-4.17	1.8273	1657
70	-4.01	1.7990	1680
80	-4.63	1.8058	1696
90	-3.90	1.8128	1713
100	-3.85	1.7784	1728

³T. Tanaka, T. lida, Steel Research 65(1) (1994) 21

DLR

in der Helmholtz-Gemeinschaft

Surface Tension – **Measurements NiFe**

X	σ_{T}	$\sigma_{\scriptscriptstyle L}$	TL
Ni _x Fe _{100-x}	$/10^{-4} N \cdot m^{-1} \cdot K^{-1}$	$/N \cdot m^{-1}$	/ K
0	-3.04	1.833	1811
10	-4.00	1.855	1779
20	-2.99	1.815	1759
30	-2.24	1.795	1738
40	-1.87	1.798	1742
50	-1.25	1.7816	1715
60	-2.67	1.811	1715
70	-3.77	1.807	1718
80			
90			
100	-3.85	1.778	1728

Surface Tension – Butler equation

Surface tension calculation method based on Butler's equation⁴

for binary solution of components 1 and 2:

$$\sigma = \sigma_1 + \frac{RT}{A_1} \ln \frac{(1 - c_2^S)}{(1 - c_2^B)} + \frac{1}{A_1} G_1^{E,S} - \frac{1}{A_1} G_1^{E,B}$$
$$= \sigma_2 + \frac{RT}{A_2} \ln \frac{c_2^S}{c_2^B} + \frac{1}{A_2} G_B^{E,S} - \frac{1}{A_2} G_2^{E,B}$$

 σ_1, σ_2 surface tensions of components 1, 2 with molar free surface A_1 and A_2 $G_1^{E,B}, G_2^{E,B}, G_1^{E,S}, G_2^{E,S}$ partial excess Gibbs energies of 1 and 2 in the bulk (B) and in the surface (S)

 $c_1^B, c_1^S, c_2^B, c_2^S$ concentrations of 1, 2 in the bulk (B) and the surface (S)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

⁴T. Tanaka, K. Hack, T. Ida, S. Hara, Z. Metallkde **87** (1996) 380

Surface Tension – Constrained Gibbs Energy Minimisation

Butler's equation is difficult to handle for multi-component systems \Rightarrow Generalisation⁵ starting from Gibbs:

- μ_i = chemical potential of *i*,
- n_i = mole fraction of *i*
- *A* = surface area, σ = surface tension
- $\mu_i^{\scriptscriptstyle B}$ = chemical potential of *i* in the bulk,
- μ_i^{s} = chemical potential of *i* in the surface

⁵P.Koukkari, R. Pajarre, K. Hack, Int. J. Mat. Res. **98** (2007) 10

Surface Tension – Constrained Gibbs Energy Minimisation

System	Constraint	Conjugate Potential
System with chemical equilibrium	$\sum_{\substack{\alpha=1\\\text{mass}}}^{\Omega} \sum_{\substack{k=1\\k=1}}^{N_{\alpha}} a_{kj} n_k^{\alpha} = b_j$	$\sum_{j=1}^{l} a_{kj} \pi_{j} = \mu_{k}$ chem. potential
Systems with surface/interface equilibria	$A = \sum_{i=1}^{N_s} n_i^s A_i$ surface area	$\pi_l = \sigma \cdot A_0$ surface energy for unit area

G calculated and minimised for equilibrium

Surface Tension – Constrained Gibbs Energy Minimisation Prerequisite data for calculation:

- Chemical potentials μ of the pure liquid components, i.e. the G-values \Rightarrow equilibrium calculations
- *Excess Gibbs energies* of the liquids (L-terms of Redlich-Kister formalism or other models)
- Temperature dependent *density values* of the pure liquid components ⇒ molar surface area
- Temperature dependent *surface tensions* of the pure liquid components
- Scaling factor β from bulk to liquid \Rightarrow excess Gibbs energies of the surface liquid $G^{ex,s} = \beta G^{ex,b}$

Surface Tension – Constrained Gibbs Energy Minimisation

Results:

- 1. Calculation of surface tension $\sigma(T)$
- 2. Calculation of A σ
- 3. Determination of excess Gibbs energies of surface components from bulk data (β)
- 4. Determination of surface bulk equilibrium

Comparison: Theoretical and Experimental Results

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Surface tension as function of composition described well within experimental error of 3 %

* calculations by J. Brillo, DLR, Cologne

Software: Screenshots

Calculation for a fixed composition ($Fe_{40}Cr_{25}Ni_{35}$) for constant temperature (1773 K)

SurfTens File Settings Help Calculation Type Point Calculation	Select Composition	Fe
Range Calculation Temperature 1773 Start 0 End 1	Element Amount ✓ Fe 40 ✓ Cr 25 ✓ Ni 35	2000 2000 2000 2000 2000 2000 2000 200
Step 0.2 Calculate Point Calculation FeCrNi.liq.dat		Cr 10 30 50 70 90

Software: Screenshots

Calculation for a composition range from $Cr_{80}Ni_{20}$ to Fe_{100} for constant temperature (1773 K)

SurfTens		
<u>File</u> Settings <u>H</u> elp		
Calculation Type Point Calculation Range Calculation Calculation Parameter Start 0 End 100 Step 0.2	Temperature 1773 K Composition 1 Element Amount VFe 0 Cr 80 VI 20	Composition 2 Element Amount Fe 100 Cr 0 Ni 0
Range Calculation	FeCrNi.lig.dat	

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Summary:

- Motivation
- FeNiCr Model system for steels
- Electromagnetic levitation Measurement of Surface Tension (oscillating drop method) Example: NiCr
- Calculation of Surface Tension The Butler equation Gibbs Energy Minimisation Method
- Comparison: Theoretical and Experimental Results

Thanks to: Deutsche Forschungsgemeinschaft (DFG) for financial funding

Thanks for your attention !

