

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Simulation of Deoxidation and Refining Process Using SimuSage

Pawel Drozdz

Faculty of Metals Engineering and Industrial Computer Science Department of Ferrous Metallurgy

Herzogenrath, June 16-18, 2010

Contents

- Main Process Parameters
- Assumptions to models development
- Dedicated tool for process simulation using SimuSage
- Conclusions

Deoxidation Process Parameters during tapping

Slag	Metal	Additions		
 weight and chemical composition of the converter slag getting into the ladle during tapping oxygen activity before the deoxidation process startup 	 weight after tapping from the furnace start temperature start chemical composition oxygen activity before and after the deoxidation process 	 weight of the ladle additions (fluxes, alloys addition) put into the ladle during tapping and their chemical composition 		
composition composition melt	ting refir	casting		

Ladle Furnace Process Parameters

Slag	Metal	Additions
 weight and chemical composition of the slag before refining the refining process startup oxygen activity before the refining process startup final chemical composition 	 weight after tapping from the furnace start and final temperature start chemical composition oxygen activity before and after the refining process intensity and time of argon injection chemical composition after argon injection 	 weight of the additions put into metal at the ladle furnace post and their chemical composition

Assumptions to static models development

□ Based on thermodynamic model (FactSage calculations)

- □ The state close to the metal-slag equilibrium is being achieved at the refining final phase
- □ The process time has no role

Assumptions to the dynamic model development

Division of the ladle volume into tanks in the process of bottom injection of argon into steel

\Box tank I (M ₁)	- 25.0%	$M_{\rm total}$
\Box tank II (M ₂)	- 52.9%	$M_{\rm total}$
\Box tank III (M ₃)	- 22.1%	$M_{ m total}$

The mathematical notation of the system of equations describing bath stirring. (Metal-slag interface reactions have not been taken into account in this model yet).

$$dm_{1}^{i}(t) = -\frac{m_{1}^{i}(t)}{M_{1}}\dot{m}_{12}\Delta t + \frac{m_{2}^{i}(t)}{M_{2}}\dot{m}_{21}\Delta t - \frac{m_{1}^{i}(t)}{M_{1}}\dot{m}_{13}\Delta t + \frac{m_{3}^{i}(t)}{M_{3}}\dot{m}_{31}\Delta t$$
$$dm_{2}^{i}(t) = \frac{m_{1}^{i}(t)}{M_{1}}\dot{m}_{12}\Delta t - \frac{m_{2}^{i}(t)}{M_{2}}\dot{m}_{21}\Delta t - \frac{m_{2}^{i}(t)}{M_{2}}\dot{m}_{23}\Delta t + \frac{m_{3}^{i}(t)}{M_{3}}\dot{m}_{32}\Delta t$$
$$dm_{3}^{i}(t) = \frac{m_{2}^{i}(t)}{M_{2}}\dot{m}_{23}\Delta t - \frac{m_{3}^{i}(t)}{M_{3}}\dot{m}_{32}\Delta t + \frac{m_{1}^{i}(t)}{M_{1}}\dot{m}_{13}\Delta t - \frac{m_{3}^{i}(t)}{M_{3}}\dot{m}_{31}\Delta t$$

 $\begin{array}{l} m_{i} \ - \ \mathrm{mass} \ \mathrm{of} \ \mathrm{reactant} \ \mathrm{in} \ \mathrm{it^{h}} \ \mathrm{reactor}, \ [\mathrm{Mg}] \\ M_{i} \ - \ \mathrm{mass} \ \mathrm{of} \ \mathrm{it^{h}} \ \mathrm{elementary} \ \mathrm{reactor}, \ [\mathrm{Mg}] \\ \dot{m}_{ij} \ - \ \mathrm{flow} \ \mathrm{rate} \ \mathrm{of} \ \mathrm{metal} \ \mathrm{bath} \ \mathrm{stream} \ \mathrm{between} \\ & \mathrm{i} \ \ \mathrm{and} \ \mathrm{j} \ \mathrm{reactors}, \ [\mathrm{Mg/min}] \\ t \ - \ \mathrm{time}, \ [\mathrm{min}] \end{array}$

 $m_{1}^{i}(t + \Delta t) = m_{1}^{i}(t) + dm_{1}^{i}(t)$ $m_{2}^{i}(t + \Delta t) = m_{2}^{i}(t) + dm_{2}^{i}(t)$ $m_{3}^{i}(t + \Delta t) = m_{3}^{i}(t) + dm_{3}^{i}(t)$

$$\chi = \frac{\Delta t \cdot m_{12}}{M_1} \times 100\%$$

The thicknesses of metal and slag layers which reach the state of mutual equilibrium depends on both the intensity of bath stirring and the calculation time interval value.

Program to simulation processes - main window

H Deoxidation model – input data

🗊 Stal v. 1.3		
Plik Baza danych		
Odtlenianie Zapisz symulację Dane Dodatki Wyniki Wybierz numer wytopu: wytopPD2 Zapisz symulację Skład chemiczny kąpieli netalowej przed spustem: Kąpiel metalowa przed spustem Skład chemiczny żużła Kapiel metalowa przed spustem Skład chemiczny żużła Ca0 43.850 131.550 C 0.020 29.400 MgO 3.660 10.980 Mn 0.030 44.100 SiO2 13.320 39.960	Wybierz gatunek stali: Żądany skład chemiczny kąpieli po odtlenieniu % Fe 100.000 C 0.000 Mn 0.000	Chemical composition of metal bath Chemical composition of converter slag
S 0.010 14.700 MnO 2.930 8.790 O[ppm] 761.6 111.955 S 0.060 0.180	Si 0.000 S 0.000 Cu 0.000	of metal bath
Masa kąpieli, Mg 147.00 FeU 20.000 60.000 Fe2O3 9.770 29.310 Masa żużla, Mg 0.30	Al 0.000 0[ppm] 0.0	
Temperatura kapieli metalowej przed spustem: 1659 [C] Ukryj masę surówki i złomu		Metal bath temperature
Masa surówki: 40.385 [Mg] Masa złomu: 121.154 [Mg]		Tool for calculation of metal bath weight base on hot metal and scrap

H Deoxidation model – additions

H Deoxidation model – results

n Stal v. 1.3	THE R. LEWIS CO.					-		ו••	
<u>Plik</u> Baza danych									
Odtlenianie								and the second sec	
Dane Dodatki Wyniki									List of used additions
Wprowadzone dodatki	Inne fazy poza Fe(liq)		_Uzyskany skł	ad chemiczny	kąpieli po odtlenieniu	⊤Żądany skład chemi	czny kąpieli po odtlenieniu —		List of non-metallic
Fe-Mn-Si: 242kg Fe-Mn-W/C: 1122kg		%	E-	%	kg	F -	%		
Granulki Al: 302kg	FeD	100.000	re C	98.681	146997.1	re	97.219		pnases
Koszt: 5656	MnD	0.024	Mn	0.071	106.400	W C	0.071		
	SiO2	0.000	Si	0.723	79 986	Si	0.010		
	CaO	19.372	S	0.000	0.087	S S	1.000		
	(AI2O3):2.000	51.840	Cu	0.000	0.000	Cu	1.000		
	MgS	0.008	AI	0.079	117.808	AI	0.000		
	CaS	0.074	O[ppm]	3.2	0.482	🔽 0[ppm]	3.0		
	CaAl407(s)	26.550	Masa stali, N	1g	148.96				
	Masa innych faz [kg]	0.53							Chemical composition
									Chemical composition
10						<u>.</u>			of metal bath from
									or meetar bach norm
									optimisation
					· · · · · ·				
					\				
									Chemical composition
									of metal bath after
									deexidation
									aeoxidation

Model odtleniania		e 19		8
Model odtleniania PbInputStreamSim1Metal PbInputStreamSim1AddIns PbInputStreamSim1Slag	Image: Arrow of the second system PbGttBalanceSim1	PbStreamSim1	PbOutputUnitSim1	

GH Refining model – input data

🗊 Stal v. 1.3	
<u>Plik</u> Baza danych	
Rafinacja w piecokadzi	Chamical composition
Ustawienia składu chemicznego Dodatki Wyniki Model kinetyczny	of metal bath
Wybierz numer wytopu testTK2 Zapisz symulację Skład chemicznu zużła Skład chemicznu żużła	
% kg % kg Fe 98.911 137485.1 Ce0 44.500 667.500 C 0.150 208.500 Mg0 7.500 112.500 Mn 0.690 953.100 A1203 11.250 168.750 Si 0.200 920.400 155.000 168.750	Chemical composition of refining slag
Si 0.180 250.200 Sola 23.440 Sola S 0.064 88.960 MnO 4.300 64.500 Al(met) 0.002 2.780 S 0.479 7.185 Al(całk) 0.002 2.780 FeO 5.000 75.000 O(ppm) 34.0 4.725 Fe2O3 0.720 10.990	
Masa metalu, Mg 139.00 Masa zuzla, Mg 1.50	Metal bath temperature (start, end)
Temperatura końcowa procesu: 1593 [C]	
Czas procesu: 37.000 [min]	Time of refining in the furnace ladle

H Deoxidation model – additions

🗊 Stal v. 1.3		
Plik Baza danych		
	_	
Rafinacja w piecokadzi Ustawienia składu chemicznego Dodatki Dodatki Odatki		Base of additions
Wybierz dodatek Granulki Al Dodaj Masa dodatku [kg]: 50,000 Początek dozowania [min]: 21,820 Czas dozowania [s]: 1 Wprowadzone dodatki:	_ [Mass and setup time of put in an addition
Usuń Febr. Slu kg. 21min., przez 40s Fehr. Siz 30 kg. 20min., przez 20s Karburyt: 70 kg. 21.68min., przez 20s Wapno: 200 kg. 21.77min., przez 60s Granulki At: 50 kg. 21.82min., przez 1s	- [Added additions
Uruchom symulację	_ [Button for starting simulation
	- [Button for simulation in real time

Refining model

• For refining in the ladle it is purposeful to create a static model in order to determine precisely the weight of the alloy additions.

Proposed model allows to determine the equilibrium state in very complicated metal-slag configurations.

Complementing the static model with the dynamic one enables it to monitor the dynamics in change of metal and slag chemical compositions, and consequently to prepare better the metal bath for a continuous caster.

The model calculation time is shorter than the process time and therefore it is possible to use it for on-line control.

Thank You

AGH University of Science and Technology, Krakow, Poland