

GTT-Technologies, 11th Annual Workshop, June 3-5, 2009

Thermodynamic optimisation of the systems K₂O-Al₂O₃-SiO₂ and Na₂O-Al₂O₃-SiO₂

June 3-5, 2009 | Elena Yazhenskikh, Klaus Hack*, Michael Mueller Forschungszentrum Jülich, IEF-2, Germany *GTT-Technologies, Germany

Content

Motivation and aim of the work Models and optimisation procedure Results of assessment for binary systems Assessment for ternary systems Summary and outlook

Hot gas cleaning: alkali removing by slags with high potential of alkali

Motivation and aims

retention $(SiO_2, Al_2O_3, Fe_2O_3)$ or by getter materials (kaolin, bauxite)

Thermodynamic calculation/prediction for slag relevant oxide systems, which are different from the point of view of experimental measurements

Calculation requires:

➢ Reliable database, based on the experimental data

➢Software

Available databases are not sufficient to model the complete coal ash (slag) system

No solution

Aim – development of a new data base for the slag relevant system containing alumina, silica, alkali oxides

Modelling of liquid and solid solutions

Composition of the liquid slag – silica, alumina, Alk₂O (Alk=Na, K)

Chosen model – associate species approach (introduced for slag by Spear, Allendorf, Besmann, 2002):

- suitable for this system
- > relatively simple for using and modification

Pure liquid oxide Na ₂ O, K ₂ O, Al ₂ O ₃ , SiO ₂ ·2				
+				
Ternary components				
Compounds	Associate species			
KAlSiO ₄	KAlSiO ₄ ·2/3			
KAlSi ₂ O ₆	KAlSi ₂ O ₆ ·1/2			
NaAlSiO ₄	NaAlSiO ₄ ·2/3			
NaAlSi ₃ O ₈	NaAlSi ₃ O ₈ ·2/5			

Binary components			
Compounds	Associate species		
Na ₄ SiO ₄	$Na_4SiO_4 \cdot 2/5$		
Na ₂ SiO ₃	$Na_2SiO_3 \cdot 2/3$		
Na ₂ Si ₂ O ₅	$Na_2Si_2O_5 \cdot 1/2$		
K ₂ SiO ₃	$K_2 SiO_3 \cdot 2/3$		
K ₂ Si ₂ O ₅	$K_2Si_2O_5 \cdot 1/2$		
K ₂ Si ₄ O ₉	$K_2Si_4O_9 \cdot 1/3$		
NaAlO ₂	NaAlO ₂		
-	$Na_2Al_4O_7 \cdot 1/3$		
KAlO ₂	KAlO ₂		
-	$Na_2Al_4O_7 \cdot 1/3$		
Al ₆ Si ₂ O ₁₃	$Al_6Si_2O_{13} \cdot 1/4$		

Interaction between solution components

Associate species model: $Al_6Si_2O_{13} \cdot 1/4$, Al_2O_3 , $SiO_2 \cdot 2$

4 sublattice model: (Al³⁺)₁(Al³⁺)₁(Al³⁺, Si⁴⁺)₁(O²⁻, Va)₅ $(KAI)_{1-x}Si_xO_2$ solid solution: Associate species KAlO₂, KAlSiO₄

Optimisation procedure

Experimental data: phase diagram data, activity data (for binary systems) Pure solid and liquid substances from the FACT database Some solution species from database of Spear et al.

Adjustable parameters:

 ΔH_f^{298} and S^{298} for the liquid and solid solution species, ΔH_f^{298} and S^{298} for the pure solid compounds (part.), interaction parameters between species

Results of assessment for binary systems

Alk₂O-SiO₂, Alk=Na, K

Alk₂O-Al₂O₃, Alk=Na, K

Results of assessment for binary systems

Results of assessment for ternary systems

Comparison of the calculated isotherms with the experimental points

Results of assessment for ternary systems

Predicted phase fields and ternary points

Quasi binary section in the Na₂O-K₂O-SiO₂ system

GTT-Technologies, 11th Annual Workshop, 3-5 June 2009

Folie 10

Results of assessment for ternary systems

Predicted phase fields and ternary points

Quasi binary section in the K₂O-Al₂O₃-SiO₂ system

Available experimental phase diagram

Modelling of solid phases

Associate Species

Name	Solid solution components	remark
Mullite	$Al_6Si_2O_{13}$: $Al_6Si_2O_{13}$ ·1/4, Al_2O_3 , SiO_2 ·2	OK
Natrium disilicate	$(Na_{1-x}K_x)_2Si_2O_5$: $Na_2Si_2O_5$, $K_2Si_2O_5$	OK
Potassium aluminate	$(KAl)_{1-x}Si_{x}O_{2}$: KAlO ₂ , KAlSiO ₄	OK
Nepheline, carnegieite	NaAlSiO ₄ : NaAlSiO ₄ , NaAlSi ₂ O ₆	OK
Natrium aluminate	$(NaAl)_{1-x}Si_{x}O_{2}$: NaAlO ₂ , NaAlSiO ₄	?

NaAlSiO₄ (low, high) and NaAlO₂(low, high) - as associate solutions

Modelling of solid phases

	Name	Formula	remark
Sublattice	Mullite	$(Al^{3+})_1(Al^{3+})_1(Al^{3+}, Si^{4+})_1(O^{2-}, Va)_5$	ОК
approach	NaAlSiO4	Nepheline (low T), carnegieite (high T) 4 sublattices: $(Al^{3+}, Si^{4+})_2 Va^0_1 (Na^{1+}, Va^0)_1 (O^{2-})_4$	new
	Potassium	KAlO ₂ - low T, high T	new
	aluminate	3 sublattices: $(Al^{3+}, Si^{4+})_1(K^{1+}, Va^0)_1(O^{2-})_2$	
	Natrium	NaAlO ₂ - low T, high T	new
	aluminate	3 sublattices: $(Al^{3+}, Si^{4+})_1 (Na^{1+}, Va^0)_1 (O^{2-})_2$	
Si ⁴⁺ :Va ⁰	Si ⁴⁺ :Na ¹⁺	Va ⁰	Si ⁴⁺
A13+•Wa0		Composition scheme	A 13+
лі . Va	лі .iva		
from NaAlSiO ₄ to	SiO ₂	from NaAlO	D_2 to SiO ₂

Preliminary results for the quasi binary section $NaAlO_2 - SiO_2$

Na₂O-Al₂O₃-SiO₂

NaAlO₂ (low T, high T), Nepheline, Carnegieite are represented by sublattice approach. The parameters of the solutions are optimised to obtain good description of the available experimental data.

Problems:

 ✓ Unknown solubility boundaries for NaAlO₂ (low T, high T) solutions
✓ Possible presence of a series of solid solutions with different crystallographic structure between NaAlO₂ and NaAlSiO₄

Comparison between 2 models for the solid solution based on KAlO₂

Sublattice model should be used for the purpose of ", uniformity" for both aluminates, $NaAlO_2$ and $KAlO_2$, and further for quaternary solution (Na, K) AlO_2

Summary and outlook

The solution data for the binary systems Alk_2O-SiO_2 , $Alk_2O-Al_2O_3$ (Alk=Na, K) and $Al_2O_3-SiO_2$ were generated to accurate description of the phase diagrams

Solid and liquid solutions in the ternary systems $Na_2O-K_2O-SiO_2$ and $K_2O-Al_2O_3-SiO_2$ were described using the new database

Sublattice model was successfully applied for the solid solutions in the $Na_2O-Al_2O_3-SiO_2$ and $K_2O-Al_2O_3-SiO_2$ systems

In future:

- > Optimisation of the solution parameters in the $Na_2O-Al_2O_3-SiO_2$ system
- \triangleright Creation of the database for possible quaternary solutions, e.g. (Na, K)AlO₂ and (Na, K)(Al, Si)O₄

 $SiO_2 - KAISiO_4 - NaAISiO_4$ Schairer (1950)

NaAlSiO₄ – KAlSiO₄ Tuttle, Smith (1958)

Thank you for your attention