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Starting from the beginning: ab initio

Aim of Quantum Chemistry: Solution of Schrodinger’s Equation

HY = EY

for molecular and crystalline systems
Cannot be solved exactly for systems with more than one electron
=» approximations (e.g. Hartree-Fock, DFT)

Solid state quantum chemistry:

=> Density functional theory (DFT)

=2 electronic band structures and energies, crystal structures,
forces etc.
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Theoretical Calculation of Enthalpies

Standard density-functional total-energy calculations give access to

the total electronic ground state energy at 0K, E, .~ U
E-V diagrams =p =—a—5:> H=E+p-v= AH(p)

Example: s
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=>» stability of solid compounds / different structure types
=>» prediction of high-pressure phases

=> up to this point: Temperature neglected
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How to deal with temperature?

Main effect of temperature: Vibrations

Other contributions: electronic excitations, configurational entropy

ab initio methods involving Temperature:

* Molecular Dynamics (MD), Monte Carlo (MC),

e Simulation of lattice vibrations (Phonons), assuming harmonic
oscillator scenario
- Mostly used: Direct Method
- Programs: PHONON, FROPHO (in combination with

electronic structure programs, e.g. VASP)

RWNTH IAC



Gibbs free energy from lattice vibrations

Calculations are carried out at const. Volume (relaxed structure)

G(p,T)=F(T.,V)+pV =F(T,V)- (2\5) v
FTV)=E, V)+F, (TV)+F,TV)+F+Fi(T,V)

'
main contribution

E,, (T,V): phonon free energy (harmonic vibrational energy)

Fop = QZm (k ,,.) +ksT> In {1 (ﬁ“‘;gf_“)”

PR k.

we only need to know the phonon frequencies ®
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pramane®d

Phonon frequencies / Direct Method

supercell method (> 50 atoms, a > 8 A)

Calculation of the Hellmann-Feynman-forces F , acting on
each atom when the other atoms are slightly dislocated
(harmonic oscillator)

Vibrational frequencies ® (k) => F , (T, V)
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Obtaining the Gibbs Free Energy

(Example: Barium Oxide)

Our calculations result in F (T) at different V

= F (V) at different T = G (p,T)
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Handling Pressure & Temperature

Example:
Tantalum oxide nitride: ST 71
B — y Phase transition at —~

© 1.5-
higher temperature and %
ambient pressure E 10-

-
Vin(1) > Vin(B) ®
= No pressure-induced 09:3 0.5-
transition

0-0 ! | ! | ' | ! | ! I

Temperature must be 400 600 800 1000 1200 1400
explicitly included! Temperature (K)
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Standardized thermochemical data

Numerical calculation of H, S and Cp from the ab initio Gibbs Function
by the well known relations:

s:_(@j H=G+T.S C :(ﬁj
ol ), "ot )

Fitting to parametrized Equation (C,=>5=>H =>G)
G=C,+C,T+C,TInT+C,T*+C.T’ +%

Gibbs function is not related to the elements but to , absolute” zero
energy = pure ab initio treatment: no problem with AG

= mixing with exp. data: values must be related to the
elements
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Cooperation with &7"

Project ELSA: Computational modelling and preparation of the
high temperature superconductor YBaZCu3O6 .

Our ,,job”: Prediction of thermochemical potentials where
there is no experimental data available

First step (done): ~ Comparing properties of simple compounds
with known thermochemical data (binary
systems, e.g. CuO, BaO)

Recent work: System Y-Ba-Cu-O,
Handling of gaseous compounds (oxygen),
AG (p,T), Phase transitions
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System Ba-Y-O

Binary oxides BaO and Y,0;: well known compounds, reliable
thermochemical data available

Ternary Oxides BaY,0, and Ba,Y,0,: wide range of different
experimental data

Example: Heat of formation (AH®) of BaY,O, from the oxides

Lit: —113 to +0.4 kJ/mol
GTT: —70.788 kJ/mol
Ab initio: —10.1736 kJ/mol

R\WNTH IAC



System Ba-Y-O

Heat Capacity and Entropy of BaY,0, compared with the data base:
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Heat Capacity not linear, Entropy slightly overestimated
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System Ba-Y-O

Heat Capacity and Entropy of Ba,Y,0, compared with the data base:
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Gibbs Free Energy of Formation (AGy)

Free energy of formation of YBa,Cu;0, s from the Oxides

1/2 Y203 + 2 BaO +3 CUO — YBaZCU3O65
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T-x phase diagram of YBa,Cu,0,,

3 possible crystal structures depending on
oxygen site fractions in the CuO -planes

tetragonal: oxygen on every site
(statistically)
orthorhombicI:  oxygen on two opposite

sites (e.g. 1 and 3)

orthorhombic II:  oxygen only on one site

Cu —J)— Cu—P—Cu
Site fraction depends on Temperature T and # % #
oxygen content x. Cu—3@— Cu—3@—Cu
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T-x phase diagram of YBa,Cu,0O

6+Xx

Calculation of the T-x-phase diagram using a sublattice model
with four different sites in the CuO,-planes

All other sites (Y, Ba, Cu, O) are fixed
= 16 different functions, from which some are degenerated
= finally 6 functions

corresponding to x =0, 0.5, 1 (2 different), 1.5, 2
— — —— —
N N
— - e —J—
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Oxygen site fraction YBa,Cu,0O, .

Site fraction of oxygen atoms in YBa,Cu,O, ; calculated by
Klaus Hack (GTT) from the data base
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Phase transition of YBa,Cu,O,

Handling the phase transition with ab initio data:

Simple model: 1x2x1 unit cell

orthorhombic tetragonal

O 9 J
o 9

Copper O Oxygen
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Phase transition of YBa,Cu,O,

! * I ¥ ! . I 5 | . 1400 | | |

e YoBa,CuOy N

"~ ~ . _tetragonal without S : 1200 4

A
o

1

!
I/

1

(8]
1 1

~ etr ot
""""""""""""""" Boogmuenia: o 0 2 momienn el 800* ' hOI

orthorhombic |

o
1 L

&
/
T (K)

tetragonal with S__

] / /} ! \

0-f i i

12.0 12.5 13.0 13.5 14.0
N(O)

N
o
| 1

-
(6]
|

Gibbs energy (kJmol™)

YBaZCu306_5

200 I 4(|JO | 6C|)0 I SCI)O ' 10|00 | 12|00 | 14|00 | 1600
Temperature (K)

Configurational entropy S_, ¢ has to be taken into account

= Good estimation of the phase transition temperature
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Summary

- Standard ab initio calculations: many properties available from

Density Functional total energy calculations
- Involving Temperature by the simulation of lattice vibrations

- Good reproduction of temperature dependent potentials like

the Heat Capacity and the Entropy

- Prediction of Temperature- and Pressure-induced phase

transitions possible via AG
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Further information:

" | Mewtat [—~g5C - RWTH Aachen = — @] Lk
e b D QY = hpy pwewsse rwth-aacsen def v (] T &
“ P Find next L1 auor mode = [B|show images  + 1+ Fit towidth iy 150% ¥

RWTHAACHEN Prof. Dr. Richard Dronskowski

UNIVE RSITY Chair of Solid-State and Quantum Chemistry

Home People Research Teaching Laboratories Miscellaneous Contact

Chair of Solid-State and Quantum Chemistry

Welcome to the Chair of Solid-State and Quantum Chemistry at RWTH Aachen University, Europe's
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