

Simulation of Wall-Corrosion of High-Energy-Discharge Lamps

3. June 2009 | Sarah Fischer

Content

- High Energy Discharge Lamps
- Construction of a Lamp Burner
- The formation of aluminum iodide
- The transport cycle
- Scheme of the transport program
- Example of the calculation results
- Annealing experimental setup
- Comparison between experiments and calculations
- Summary

Hoch – Energie – Entladungslampen

Corrosion effects in the lamp burner limit the life time

The lamp burner

The formation of aluminum iodide

 $Al_2O_3(s) + Cel_3(l) \leftrightarrow CeAlO_3(s) + All_3(g)$ Gas phase Salt melt (Nal, Cal₂, Cel₃) Al₂O₃ Lamp wall

The transport - cycle

Scheme of the transport program

Input of the salt mixture and the Al₂O₃

Equilibrium reactors

Amount of the gas phase components

Example: Nal – Cel₃ – Mixture

Salt free annealing vessel1400℃1200℃

> Material: polycrystalline aluminum oxide (PCA)

- Metrics: Length 26cm; Diameter 1cm
- Closing: Platinum-Niobium-Conductor
- Atmosphere: Argon (Salt)
- Salt filling: 200mg

Scheme of the annealing furnace

Destruction-free X-ray analysis of a annealing vessel with 47,5% Nal, 47,5% Cal₂ and 5% Cel₃:

SEM – Analysis with 90,48% Cal₂ and 9,52% Cel₃

Comparison between experiments and simulations

Nal – Cal₂ - Mixture

Composition Nal, Cal₂

75% Nal, 25% Cal₂ 50% Nal, 50% Cal₂ 25% Nal, 75% Cal₂

<u>Simulation [mol Al₂O₃]</u>: 1,22 · 10⁻⁹ < 2,55 · 10⁻⁹ < 7,16 · 10⁻⁹

Experimental certification:

 \rightarrow Agreement for NaI – CaI₂ – Mixture

Comparison between experiments and simulations

 $Cal_2 - Cel_3 - Mixture$

	<u>Composition Cal₂, Cel₃</u>		
	90,48%, 9,52%		87,1%, 12,9%
Simulation [mol Al ₂ O ₃]:	5,08 · 10 ⁻⁸	<	5,58 · 10 ⁻⁸

Experimental certification:

~

What causes this difference?

Formation of secondary phases

 Al_2O_3 Ce₂O Signal = SE, EHT = 16 kV

 Al_2O_3 _ca(s) $Cal_2_l(liq)$ Al_2O_3 _cc(s2) Cal_2 ci(s) CeOI ci(s) Cel₂ (liq) $Al_2O_3_l(liq)$ $CeAlO_3_ci(s)$ CeAl₁₁O₁₈_ci(s) Cel₃_ci(s) $CeAlO_3_l(liq)$ $Ce_2Al_2O_6_ci(s)$ $CeAl_{11}O_{18}$ [(liq)] $CaAl_4O_7_ci(s)$ $CaAl_2O_4$ ci(s) Al_l(liq) Al ci(s) CaO ci(s) All₃_l(liq) CeO_2 _ci(s) AI $Ce_2O_3_ci(s)$

Calculated Activity

1.0000E+00 9.4561E-01 4.9718E-01 2.4571E-01 1.1649E-01 5.4007E-02 3.5536E-02 2.0447E-02 1.3446E-02 1.1285E-02 5.4999E-03 4.1199E-03 3.4167E-03 3.0990E-03 7.1260E-04 6.7438E-04 4.0705E-04 1.4573E-05 2.7872E-06 1.6025E-06 9.3713E-07 6.0181E-07

Example: $Nal - Cal_2 - Cel_3 - Mixture$

Summary

- Corrosion- and rearrangement effects of the wall material limit the life time of High-Energy-Discharge-Lamps
- Cooperative Transport Model was programmed with SimuSage
- Simulations of the corrosion speed of lamp relevant salt mixtures
- Comparison of the experiments and simulations
- Next simulation step are ternary salt systems

Have you any questions?

Thanks for your attention.