

Phase Relations in Stainless Steel Slags Sander Arnout

InsPyro

Promoters: Bart Blanpain and Patrick Wollants Thermodynamics in Materials Engineering Research Group Department of Metallurgy and Materials Engineering

InsPyró

• Our mission:

"InsPyro improves metallurgical processes by researchbased industrial projects

and develops new sustainable high-temperature processes in cooperation with its customers"

Tools

High temperature experimentation

Tube furnaces Induction furnace CSLM DSC

. . .

Materials characterization

SEM EPMA XRD ICP

. . .

Thermodynamic Modelling

Liquidus Solidification Reactions

Scientific Literature

Journals Proceeding Reports

. . .

Providing insight in pyrometallurgy

Overview

- Background
- Experimental method
- Results on the multicomponent system CaO-CrO_x-MgO-SiO₂ + Al₂O₃
- Results + optimisation on the ternary system CrO_x-MgO-SiO₂
- Back to the multicomponent system
- Conclusions

Background

Recycling stainless steel

Try to recycle carbon steel yourself on www.steeluniversity.org

Background

Scrap is the main raw material

Background

Electrical energy melts the feed materials

8

Background

Liquid steel and slag are formed

9

Background

The molten material is tapped

Thermodynamic questions

Where does everything end up?

More information on the thermodynamics of the EAF process: S. Arnout et al., Steel Res Int

Thermodynamic questions

What happens to the refractory?

More information on the refractory degradation in stainless steel: P.T. Jones et al., J Eur Ceram Soc

Thermodynamic questions

- What will become of the slag when it is cooled?
 - ? waste or useful side product?

12

Thermodynamic questions

- What will become of the slag when it is cooled?
 - ? Depends on the macroscopic properties
 - ? Properties depend on microstructure
 - C₂S phase: destructive transformation leads to powder slag
 - Spinel phase: is believed to bind Cr well, less leaching
 - CS phase: has some solubility for Cr, as opposed to C₂AS
 - [Glass phase: not so strong...]
 - ? Microstructure depends mostly on composition
- Link composition stable phases/microstructure = Thermodynamics

*More info on process-properties-microstructure for slag: D. Durinck et al., J Am Ceram Soc

Goal of this thesis

- Improve the description of stainless steel slags
- 5 component system
 - CaO
 - SiO₂
 - MgO
 - CrO_x (CrO and Cr₂O₃)
 - Al₂O₃
- Experimental liquidus determination
- Comparison with FactSage
- Evaluation and improvement of the database

Database construction (Calphad)

Database construction (Calphad)

Database construction (Calphad)

Strategy of this work

KATHOLIEKE UNIVERSITEIT LEUVEN Background – Meth

CO/CO

mixina

Experimental method

- Mixing powders from pure oxides
- Equilibration in tube furnace
 - Mo crucibles (reuseable)
 - Control p_{O2} by CO/CO₂ mass flow (CO + $\frac{1}{2}$ O₂ = CO₂)
- Sampling
 - Gas tight sampling with Al₂O₃ bars
- EPMA-WDS with standards

Observed phases

- L = liquid
- E = eskolaite (Cr_2O_3 with Al_2O_3 solubility)
- Sp = spinel (MgO.Cr₂O₃ with AI_2O_3 solubility)
- P = periclase (MgO with CrO_{1.5} solubility)
- $S = SiO_2$
- $C_2S = 2CaO.SiO_2$
- M₂S = 2MgO.SiO₂ (with CrO solubility)
- MS = MgO.SiO₂ (with CrO solubility)

Resulting microstructures

- Sedimentation makes amount of precipitates vary strongly
- Cooling effects: precipitation in matrix, growth of solids

21

Overview

- Background
- Experimental method
- Results on the multicomponent system CaO-CrO_x-MgO-SiO₂ + Al₂O₃
- Results + optimisation on the ternary system CrO_x-MgO-SiO₂
- Back to the multicomponent system
- Conclusions

Sander Arnout – Phase relations in stainless steel slags Background – Method – Multicomponent – Ternary – Multicomponent – Conclusions

Results: $B=CaO/SiO_2=1.2$

KATHOLIEKE UNIVERSITEIT

> Similar results at different p_{O2} , T, and Al_2O_3 level

Addition of Al₂O₃: Liquidus

Eskolaite liquidus

Spinel liquidus

Addition of Al₂O₃: Solidus

Alumina content in spinel and eskolaite

Results: B=CaO/SiO₂=0.5

KATHOLIEKE UNIVERSITEIT

Similar results at different T

- Origin of differences
- On Y-axis: CaO-CrO_x-SiO₂ system
- Centrally at low basicity:
 - Only at high SiO₂ content
 - When both MgO and CrO_x present
 - CrO_x-MgO-SiO₂ system!

Experiments + new model for CrO_x-MgO-SiO₂

Overview

- Background
- Experimental method
- Results on the multicomponent system CaO-CrO_x-MgO-SiO₂ + Al₂O₃
- Results + optimisation on the ternary system CrO_x-MgO-SiO₂
- Back to the multicomponent system
- Conclusions

CrO_x-MgO-SiO₂ system

Different p_{O2}, at T=1600°C:

KATHOLIEKE UNIVERSITEIT

- Air $p_{O2} = 0.21$ atm (all Cr = Cr³⁺)
- $CO/CO_2 = 25$ $p_{O2} = 10^{-9.56}$ atm
- $CO/CO_2 = 50$ $p_{O2} = 10^{-10.16}$ atm
- Metallic Cr $p_{O2} \sim 10^{-13}$ atm (all Cr = Cr²⁺)
- Solubility of Cr³⁺ in liquid very limited (stable solids)
- Solubility of Cr²⁺ in liquid extensive

Sander Arnout – Phase relations in stainless steel slags Background – Method – Multicomponent – Ternary – Multicomponent – Conclusions

CrO_x-MgO-SiO₂ system in air

KATHOLIEKE UNIVERSITEIT

Good agreement literature experiments 20 80 L+Sp+S liquidus new experiments L+Sp+M₂S liquidus model M₂S composition No Cr₂O₃-MgO-SiO₂ terms liquidus data from Morita 30 70 FactSage not changed liquidus from Keith L+S Oby 814 calculated phase diagram Wtolo SiO L+Sp+S 60 L+Sp 50 50 L+Sp+M₂S 1600°C M₂S p_{O2}=0.21 atm 60 40 FactSage=New 10 20 30 0 40 wt% Cr₂O₃

CrO_x-MgO-SiO₂ system at 10^{-9.56} atm O₂

KATHOLIEKE UNIVERSITEIT

CrO_x-MgO-SiO₂ system at 10^{-10.16} atm O₂

KATHOLIEKE UNIVERSITEIT

IEUVEN

Sander Arnout – Phase relations in stainless steel slags Background – Method – Multicomponent – Ternary – Multicomponent – Conclusions

CrO_x-MgO-SiO₂ system with Cr metal

KATHOLIEKE UNIVERSITEIT

CrO_x-MgO-SiO₂ system with Cr metal

Challenges in optimisation

- SiO₂ liquidus location
- Spinel liquidus slope
- L+Sp+M₂S equilibrium

Liquidus projection

- In air:
 - experimental data < 1850°C</p>

Liquidus projection

With metallic Cr

Overview

- Background
- Experimental method
- Results on the multicomponent system CaO-CrO_x-MgO-SiO₂ + Al₂O₃
- Results + optimisation on the ternary system CrO_x-MgO-SiO₂
- Back to the multicomponent system
- Conclusions

Quaternary system

B=0.5

B=1.2

Conclusions

- Experiments in the multicomponent system
 - Difference on eskolaite liquidus in CaO-CrO_x-SiO₂
 - Large differences originating in CrO_x-MgO-SiO₂
- Experiments in ternary system CrO_x-MgO-SiO₂
 - Most literature confirmed
 - M₂S liquidus clarified
 - Solubility of Cr in M₂S
- Modelling of the ternary system
 - Improved description
 - Also in the quaternary ? FactSage 6.0
- Full text on http://hdl.handle.net/1979/2076