

GTT-Technologies` 10th Annual Workshop, June 4-6, 2008

Thermochemical assessments for alkalicontaining oxide systems with silica and alumina

05.06.2008 Elena Yazhenskikh, Klaus Hack*, Michael Mueller Forschungszentrum Jülich, IEF-2, Germany *GTT-Technologies, Germany

Content

- Introduction and aim
- Model and optimisation
- > Application of a new data base for binary subsystems
- > Application of a new data base for ternary subsystems
- Conclusions and outlook

Introduction and aim

Pressurized Pulverized Coal Combustion – as potential concept of power plant with reduced CO₂-emission and increased efficiency

Hot gas cleaning: alkali removing by slags with high potential of alkali retention (SiO₂, Al₂O₃, Fe₂O₃) or by getter materials (kaolin, bauxite) Available databases are not sufficient to model the complete coal ash (slag) system

Aim – development of a new data base for the slag relevant system containing alumina, silica, alkali oxides

Associate species model

		_
Pure liquid oxide:		
$Na_2O, K_2O, Al_2O_3, SiO_2 \cdot 2$		
Liquid (slag)		
Ternary components		
Compounds	Associate species	
KAlSiO ₄	KAlSiO ₄ ·2/3	
KAlSi ₂ O ₆	KAlSi ₂ O ₆ ·1/2	

Binary components		
Compounds	Associate species	
Na ₄ SiO ₄	Na ₄ SiO ₄ ·2/5	
Na ₂ SiO ₃	$Na_2SiO_3 \cdot 2/3$	
Na ₂ Si ₂ O ₅	$Na_2Si_2O_5 \cdot 1/2$	
K ₂ SiO ₃	$K_2 SiO_3 \cdot 2/3$	
K ₂ Si ₂ O ₅	$K_2Si_2O_5 \cdot 1/2$	
K ₂ Si ₄ O ₉	$K_2Si_4O_9$ ·1/3	
NaAlO ₂	NaAlO ₂	
	$Na_2Al_4O_7 \cdot 1/3$	
KAlO ₂	KAlO ₂	
	$Na_2Al_4O_7 \cdot 1/3$	
Al ₆ Si ₂ O ₁₃	$Al_6Si_2O_{13} \cdot 1/4$	

Mullite:

 $Al_6Si_2O_{13}$ ·1/4, Al_2O_3 , SiO_2 ·2

KAl_{1-x}Si_xO₄ solid solution: KAlO₂, KAlSiO₄

Optimisation

Experimental data: phase diagram data, activity data (for binary systems) Pure solid and liquid substances from the FACT database Some solution species from database of Spear et al.

Adjustable parameters: ΔH_f^{298} and S^{298} for the liquid and solid solution species, ΔH_f^{298} and S^{298} for the pure solid compounds (part.), interaction parameters between species

$$G_{m} = \sum x_{i}G_{i}^{0} + RT\sum x_{i}\ln x_{i} + \sum \sum_{i < j} x_{i}x_{j}\sum_{v} L_{ij}^{(v)}(x_{i} - x_{j})^{v}$$
$$L_{ij}^{(v)} = A_{ij}^{(v)} + B_{ij}^{(v)} \cdot T + C_{ij}^{(v)} \cdot T \cdot \ln T + D_{ij}^{(v)} \cdot T^{2} + \dots, v = 0, 1$$

New database for the oxide systems

Oxide system

Results of assessment for the binary systems

Me₂O-SiO₂, Me=Na, K

Results of assessment for the binary systems

Me₂O-Al₂O₃, Me=Na, K

Thermodynamic data on $NaAl_9O_{14}$ (β -alumina) and $Na_2Al_{12}O_{19}$ (β) -alumina) were optimised.

5 June 2008

Results of assessment for the binary systems

Ternary K₂O-Na₂O-SiO₂ system

Comparison of the calculated isotherms with the experimental points

Ternary K₂O-Na₂O-SiO₂ system

Predicted phase fields and ternary points

Quasi-binary sections in the K₂O-Na₂O-SiO₂ system

K₂SiO₃-Na₂SiO₃

Quasi-binary sections in the K₂O-Na₂O-SiO₂ system

5 June 2008

Liquid

•binary associate species

interaction parameters

between binary and

ternary species

•ternary species:

KAlSi₂O₆ \cdot 1/2 and

 $KAlSiO_4 \cdot 2/3$

K₂O-Al₂O₃-SiO₂ system

Comparison of the calculated equilbria with the experimental points

K₂O-Al₂O₃-SiO₂ system

Predicted phase fields boundaries

Quasi-binary section in the K₂O-Al₂O₃-SiO₂ system-1

Quasi-binary section in the K₂O-Al₂O₃-SiO₂ system-2

Thermodynamic data on $KAlSi_3O_8$ (s2, feldspar) and $KAlSiO_4$ (kaliophilite) were optimised.

Conclusions and outlook

The solution data for the binary systems Me₂O-SiO₂, Me₂O-Al₂O₃ (Me=Na, K) and Al₂O₃-SiO₂ were generated to accurate description of the phase diagrams
Solid and liquid solutions in the ternary systems Na₂O-K₂O-SiO₂ and K₂O-Al₂O₃-SiO₂ were described using the new database

Future goals:

Assessment the further solution parameters in the Na₂O-Al₂O₃-SiO₂ system
Addition of magnesium and calcium oxides to the database

Thank you for your attention