

10th Annual GTT-Technologies Workshop Herzogenrath, Germany June 4-6, 2008

Advances in Modelling Salt Stock Deposition of Nuclear Wastes

Mingliang Xie and Helge C. Moog

GRS, Braunschweig, Germany

Content

- Introduction
- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

Content

GRS

• Introduction

- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

GRS CCC. Biosphere **10** - 10 - 10 Λ ? > Aquifer Overburden ? ? Backfill Waste Solution Host rock

Of course, a real underground structure of a disposal site is much more complex...

This is just ONE base of an underground disposal site

- Red = Barriers
 Green = solid salt
 Blue = crushed salt
 Black = Disposal cavern
 Grey = Excavation-disturbed zone
- Up to 15 bases possible

Coupled Processes in Geotech Systems

Concept of Coupled Processes

Disposal chamber for waste

 $G \mathcal{L}$

RS

GRS

Modells for the calculation of activity coefficients

- Debye-Hückel (1923): purely electrostatic interactions
- Extensions to the DH-equation...
- Approaches considering specific ionic iteractions ...

- Material microstructure
- Dissolution/precipitation (C)

•
$$n = n_0 - \sum_{j=1}^{nm} V_j M_j$$

• Swelling (bentonite) $n = n(\epsilon, \text{other factors})$

$$n_{\rm IL} = (S^l)^{\eta} \cdot \beta \cdot n_{\rm IL\,max}$$

 n_0

(Clauser 2003)

Geochemical processes

- Chemical evolution of waters, gases and minerals intimately coupled to TH processes
 - Drying concentrates aqueous species in remaining liquid phase
 - Boiling forces mineral precipitation
 - Dilute water in condensation zones promotes dissolution of minerals
- Mineral-water reactions limited by kinetics and water saturation
- pH affected by
 - CO₂ degassing and transport
 - Mineral dissolution/precipitation
- Mineral dissolution and precipitation
 - Porosity and permeability

THC Processes

Content

- Introduction
- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

Governing Equations GRS Saturated $\frac{\partial C_i}{\partial t} = -v_a \nabla C_i + \nabla \cdot (D \nabla C_i) + Q_{C_i} + \underbrace{Reakt(C_1, ..., C_n)}_{\underbrace{}}$ i=1, 2, ..., nn x conservative Transport Chemical reactions with PHREEQC, ChemApp or GEMS-PSI $\frac{\partial C_i}{\partial t} = -v_a \nabla C_i + \nabla \cdot (D \nabla C_i) + Q_{C_i}$ $\frac{\partial C_i}{\partial t} = Reakt(C_1, ..., C_n)$

Governing Equations

Unsaturated

$$\frac{\partial (nS_{\gamma}C_{i,\gamma})}{\partial t} = -v_{\gamma}\nabla C_{i,\gamma} + \nabla (nS_{\gamma}D_{i,\gamma}\nabla C_{i,\gamma}) + nS_{\gamma}Q_{i,\gamma} + nS_{\gamma}\Gamma_{i,\gamma}(C_{1,\gamma}...C_{n,\gamma})$$

where $C_{i,\gamma}$ is the concentration of the i-th component of a *n* component system in phase γ , v_{γ} is the Darcy velocity of phase γ , S_{γ} is saturation of phase γ , *D* is the diffusion - dispersion coefficient of component *i* in phase γ , $Q_{i,\gamma}$ is the source/sink term and $\Gamma_{i,\gamma}(C_{1,\gamma}...C_{n,\gamma})$ is the source/sink term of component *i* in phase γ due to equilibrium chemical reactions with all other species in the same phase.

Geochemical simulators

RockFLow/GeoSys+ChemApp

Object-Orientation: Multifield Problems

Geometric Element Types

Multi-Componental Systems

Dimension: (number of grid nodes * number of components)² For real world applications: $(10^5 * 20)^2 = 4*10^{12}$ Memory requirement: $4*10^{12}$

PCS Implementation

Parallelization

In cooperation with HLRS Stuttgart

Verification example: Comparison with 1D PHREEQC

1D Transport and Cation exchange (Example 11, PHREEQC – User Instructions)

Flushing a 1D column with CaCl₂. Initial pore water: Na, K Exchange: Ca-X2, Na-X, K-X

25

GRS

Concentrations at the column outlet

Content

- Introduction
- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

Cause of Database Difference

1D Benchmark

Verification Example

1D Transport and calcite dissolution

Simulated Program

- -- MST1D (by Engesgaard and Kipp 1992)
- -- PHT3D (by Prommer 2002)
- -- GeoSys/PHREEQC (by Xie et al 2005)

Simulation results comparison

Simulation results comparison

Database sensitivity analysis

Species	$ riangle_f G_m^0 \ (J \cdot mol^{-1})$		Percentage	
	YMF	NAGRA/PSI	Error	error $(\%)$
H_2O	-237182.3302	-237140	-42.33015071	0.018
OH^-	-157297.7015	-157230	-67.70151593	0.043
Mg^{2+}	-455375	-455375	0	0.000
Ca^{2+}	-552806	-552806	0	0.000
Cl^{-}	-131217	-131217	0	0.000
$(HCO_3)^-$	-586845	-586875	30	-0.005
$(CO_3)^{2-}$	-527887.7684	-527917	29.23161984	-0.006
$(CO_2)^0$	-385878.4885	-385992	113.5115214	-0.029
$CaCO_3^0$	-1099684.997	-1099127	-557.9973053	0.051

Species	$\Delta_f G_m^0 \ (J \cdot mol^{-1})$		Percentage	
	YMF	NAGRA/PSI	Error e	rror $(\%)$
$MgCO_3^0$	-1000266.45	7 -1000300	33.54316887	-0.003
$Mg(OH)^+$	-625873.121	1 -627215	1341.878896	-0.214
$Mg(HCO_3)^+$	-1048131.82	-1048347	215.1801576	-0.021
$Ca(HCO_3)^+$	-1145625.60	8 -1145992	366.3916877	-0.032
$Ca(OH)^+$	-716735.305	5 -716997	261.6944549	-0.036
$CaCO_3_Aragonite$	-1128274.3	-1128306	31.69994012	-0.003
$CaCO_3$ _Calcite	-1129098.54	1 -1129127	28.45857172	-0.003
$CaMg(CO_3)_2$ _Dolomit	te-2167523.83	5 -2161565	-5958.83463	0.276

^b Database based on EQ3/6, data0.ymf.

Database sensitivity analysis

Content

- Introduction
- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

1D Benchmark

Application Example

1D Transport and UO2(s) dissolution

Simulated Program

-- GeoSys/Rockflow+ChemApp (by Xie et al 2005)

RS

Content

- Introduction
- Reactive Transport Modelling
- Reactions and Database
- Application UO2(s) dissolution and transport
- Outlook

Outlook

GRS

Implementation of coupled effect of volumetric changes due to chemical reaction on HM-behaviour

Corrosion of HLW container and gas production Performance assessment: Application to real systems

Paralel computing