On the thermochemical modelling of viscosities of liquid oxide mixtures

Alex Kondratiev GTT-Technologies, Kaiserstrasse 100 52134 Herzogenrath, Germany ak@gtt-technologies.de

Structure of presentation

I. Application of neural networks

- I.O. Introduction
- I.1. Effect of data sorting
- I.2. Effect of temperature
- I.3. Effect of composition
- I.4. Summary
- II. Viscosity model
 - II.0. Introduction
 - II.1. Structure of oxide mixtures
 - II.2. Associate species thermodynamic model
 - II.3. Avramov equation
 - II.4. Viscosities of binary systems
 - II.5. Temperature dependence
 - II.6. Summary
- III. Modelling heterogeneous mixtures

GTT-Technologies

I. Application of neural networks

I.O. Introduction – SlagVis

- SlagVis (Research Centre of Computational Mechanics, Japan)
- Based on neural network model (Hanao, Kawamoto, Tanaka, Nakamoto, 2006)
- Learning algorithm: sequential backpropagation method

I.O. Introduction – SlagVis

8	SlagVis		
Open(O) Mold Flux(M) Clear(C) NeuOpt(N) Help(H) Exit(X)			
output		ew opunnsauc	
	Evaluate 2.192	Unit of Temperature: [C]	
V1SCOS1ty			\sim
	SiO2 55	K20 1	
	AI2O3 15	MnO 2 D2O5 05	
	CaF2 2	TiO2 1	– manual input:
	Na2O 5	Temperature 1500	- composition &
	MgO 5		composition &
	Fe2O3 5		temperature
	B203 05		peracare
	Li20 1		
	1		
file input	Evaluate/File		
ine input	Input File:		
& output	Output File:		
L (
optimised			
notwork	Network File Name: MoldFluxwrk		Summary
IICLWUIK			

I.O. Introduction – SlagVis

I.O. Introduction – viscosity database

Viscosity database (Kondratiev, 2004-2008):

- > 18,500 experimental points
- > 2,500 compositions (synthetic systems)
- AI_2O_3 , CaO, FeO, Fe₂O₃, K₂O, MgO, Na₂O, PbO, SiO₂ + B₂O₃, BaO, GeO₂, Li₂O, MnO, SrO
- T range: 300 2500°C

I.O. Introduction - scheme of tests

Tests carried out:

- Data sorting
- Temperature interand extrapolation
- Composition interand extrapolation

I.1. Effect of data sorting

- Sequential backpropagation algorithm depends on data sorting
- Randomisation necessary
- Batch backpropagation algorithm being implemented

I.2. Effect of temperature

Al₂O₃-CaO-SiO₂, X_{SiO2}=0.5, X_{Al2O3}=X_{CaO}=0.25

I.3. Effect of composition

Al₂O₃-Na₂O-SiO₂, X_{SiO2}=0.75, 1400°C

I.3. Effect of composition

Al₂O₃-CaO, 1700°C

I.4. Summary

- Neural network approach is essentially suitable for calculating melt viscosity
- Neural network model can be trained with any data (e.g. owner's data)
- Learning algorithm has to be independent of data sorting
- Interpolative capability is good
- Extrapolative capability is reasonable
- Further tests (multi-component melts) are necessary
- Neural network approach can be used in CFD calculations

GTT-Technologies

II. Viscosity model

II.0. Introduction

- Viscosity is non-static but dynamic property: "reaction" to applied shear stress
- Theoretically transport coefficient: transport of momentum
- Viscosity is structure-related property

GTT-Technologies

First principles simulation results, Google.com

Q-species

Concentrations of Qⁱ species as functions of composition & (temperature)

Na₂O-SiO₂ system, ~1200°C

- Yazhenskikh, Hack, Mueller, 2006-2008
- Thermodynamic assessment of Al₂O₃-K₂O-Na₂O-SiO₂ system
- Liquid slag is mixture of associate species: e.g. Na₄SiO₄, K₂SiO₃, NaAlO₂ etc.
- Associate species can provide reasonable approximation of melt structure

- Associate species ↔ Q-species (not always possible; e.g. for QC t/d model)
- For example, in Na₂O-SiO₂ system: $Na_4SiO_4 \leftrightarrow Q^0$; $Na_2SiO_3 \leftrightarrow Q^2$; $Na_2Si_2O_5 \leftrightarrow Q^3$; $Si_2O_4 \leftrightarrow Q^4$

Na₂O-SiO₂ system, 1200°C

K₂O-SiO₂ system, 1200°C

II.3. Avramov equation

II.3. Avramov eq vs Arrhenian eq

II.4. Viscosities of binary systems

Na₂O-SiO₂ system, 1200°C

II.4. Viscosities of binary systems

K₂O-SiO₂ system, 1200°C

II.5. Temperature dependence

Avramov, JCP, 1991

- Activation energy is distributed (approx. Poisson or Gauss)
- Distribution variance depends on entropy, which in turn depends on temperature
- At low temperatures melt viscosity deviates from linear "logη vs T" dependence

II.5. Temperature dependence

Na₂O-SiO₂ system, X_{SiO2}=0.8

II.6. Summary

- Viscosity model based on Avramov eq can provide better description than Arrhenianlike model
- Melt thermodynamics and viscosity can be described with one set of associate species
- Associate species are to be corrected according to spectroscopic data or/and viscosity data

GTT-Technologies

III. Modelling heterogeneous mixtures

Factors influencing flow behaviour of heterogeneous silicate melts

- Volume fraction of crystals
- Viscosity of liquid phase
- Shape of crystals
- Size of crystals

$$\eta = f(\Phi, \eta_L, shape, d_{eff})$$

Roscoe-Einstein equation

model parameters

Shapes of crystals in silicate melts

GTT-Technologies

Thank you for your attention!

