AACHENER VERFAHRENSTECHNIK

General Considerations for Process Modelling on a Thermochemical Basis

> GTT-Workshop 4. - 6.6.2008 Tobias Ginsberg, Michael Modigell AVT, Turmstraße 46, D-52056 Aachen

Introduction

- Computational thermochemistry is a strong tool to simulate the behaviour of complex chemical Systems
- Restricted in pure form to ideal conditions
 - homogeneous mixing
 - no reaction kinetic inhibitions
- However, many technical processes involve both, complex chemistry and incomplete mixing or kinetic inhibitions
- Improve pure thermochemical model by process analysis and choice of a proper model structure

Cement production plant

Minor components – Pure TC

	Hot Meal	Kiln inlet	Kiln Inlet
[Mass-%]	Msmt.	Pure TC	Msmt.
SO ₃	0.32	0.32	1.19
K ₂ O	0.69	0.69	5.20
Na ₂ O	0.07	0.07	0.11
Chloride	0.01	0.01	3.56
Sulfide	0.01	0.00	0.01

 Enrichment of minor components at kiln inlet

RNTH

AACHENER VERFAHRENSTECHNIK

Transport conditions within a rotary kiln

- Dust loading of gas phase
- Gas in between solid particles (Frisch, 1983 / Brauers, 1971)

 y_{s} = 0,2 kg Dust / kg Gas y_{G} = 10-4 kg Gas / kg Solid

AACHENER VERFAHRENSTECHNIK

Results – Minor components at kiln inlet

	Kiln Inlet	Kiln inlet	Kiln inlet
[Mass-%]	Msmt.	Pure TC	TC-Model
SO ₃	1.19	0.32	1.40
K ₂ O	5.20	0.69	1.87
Na ₂ O	0.11	0.07	0.10
Chloride	3.56	0.01	0.92
Sulfide	0.01	0.00	0.00

RNIT

AACHENER VERFAHRENSTECHNIK

Waste incineration plant

Fly ash composition – Pure TC

Condensation of volatile heavy metals in the heat exchanger section

Fly ash composition – Pure TC

Combustion chamber temperature: 900 °C

Heavy metal condensation on fly ash

Gaseous heavy metals condense on the surface of fly dust particles

$$\frac{\dot{m}_{Cyclone\ ash}}{\dot{m}_{Filter\ ash}} \approx \frac{25\%}{75\%} = \frac{1}{3}$$
$$\frac{S_{Cyclone\ ash}}{S_{Filter\ ash}} \approx \frac{5\%}{95\%} = \frac{1}{19}$$

- Separation of heavy metal compounds
 - By mass (~ 1/3) • Solid:
 - Gaseous: By specific surface area (~ 1/19)

Heavy metal condensation on fly ash

Results - Heavy metal condensation

AACHENER VERFAHRENSTECHNIK

Grate Combustion

Grate Combustion – Pure TC

Grate Combustion – Qualitative Analysis

- Processes on the grate
 - Several distinct zones on the grate with separate air supply
 Varying temperature and oxidation conditions
 - Particles are entrained into the gas phase
 ⇒ Fly Dust
 - Incomplete carbon burnout on the grate
 ⇒ Residual C in bottom ash
- Modeling
 - Four equilibrium zones on the grate, different temperatures and air flow rates
 - Partial transfer of solids into the gas phase
 Correctly determine fly dust flow rate
 - Solid bypass around grate equilibrium zones
 - ⇒ Correctly determine residual carbon in bottom ash

Results - Grate Combustion

Conclusion and Outlook

- Computational thermochemistry is a strong tool to simulate the ideal behaviour of complex chemical systems
- Process analysis allows for incorporation of non-idealities by means of a properly chosen model structure and few simple and plausible assumptions
- ⇒ Significant improvement of modeling results
- Further improvement is possible but requires disproportion-ately more information
 - e.g. in grate combustion CI is much easier released from PVC than from NaCl or KCl

AACHENER VERFAHRENSTECHNIK

Thank you for your attention!

