The Use of Computer Simulation of the Microstructure of Al-Alloys in Industrial Practice

Olaf Engler, Hydro RDB GTT Workshop, Herzogenrath, 05.06.2008

(1) 2008-06-05

The Use of Computer Simulation of the Microstructure of Al-Alloys in Industrial Practice

Outline

- Introduction: through-process modelling
- Modelling Environment at RDB, incl. simulation of microchemistry
- Application example: thermostability in Al-foil

HYDRO

Through-Process Modelling

Main metallurgical reactions along the process chain

- homogenisation: diffusion, microchemistry (solutes, phases)
- hot rolling: work hardening, softening, texture, microchemistry
- cold rolling: work hardening, texture
- back-annealing: softening, texture

- microchemistry
- work hardening
- softening

Through-Process Modelling

Modelling Environment at RDB

- microchemistry: FactSage (incl. Scheil), ClaNG
- work hardening: GIA, 3IVM
- softening: AlSoft

BMBF Project ClaNG Plus

Duration:

- Start: 01.01.2007
- End: 31.12.2010

Partners

- Hydro Aluminium Deutschland GmbH, R&D Bonn project management
- Institut f
 ür Metallkunde und Metallphysik, RWTH Aachen
- GTT-Technologies, Herzogenrath

Workpackages:

1) Model development ClaNG (IMM, Hydro)

2) Link of ClaNG model to modern multi component thermodynamic data bases (IMM, GTT, Hydro)

- 3) Link of ClaNG model to property models (IMM, Hydro)
- 4) Evaluation of applicability to solidification (IMM, Hydro)

5) Full scale trials and characterization (Hydro, IMM)

ClaNG Modell "<u>Cla</u>ssical <u>N</u>ucleation and <u>G</u>rowth"

ClaNG model overview

<u>Goal</u>: determine the precipitation kinetics classical theories:

- Nucleation: Becker and Döring
- Growth: Zener
- Evolution of precipitate size distributions: continuity equation (*Kampmann and Wagner*)

Decision based on thermodynamic calculations using ChemApp (*GTT Technologies*)

 Data base: Thermotech AITT (8 elements: AI-Cr-Cu-Fe-Mg-Mn-Si-Ti)

developed by L. Löchte (RDB), G. Gottstein (IMM) and M. Schneider (Diss. IMM, 2006), advanced by E. Jannot (Diss. IMM, 2008)

ClaNG model overview

Thermodynamic calculations (I)

At every interface, one assumes that a <u>local equilibrium</u> is achieved after a short time

For each possible phase (Mg_2Si , alpha, ...) perform the <u>chemical reaction</u> corresponding to the matrix decomposition occurring at the interface between the matrix and the phase

Thermodynamic calculations (II)

Use of <u>ChemApp</u>:

- Set initial conditions (temperature, concentrations in the matrix)
- Enter two phases: matrix + another phase
- Perform equilibrium
- Extract necessary information
 - equilibrium concentrations c_i^{α} in the Al matrix α
 - equilibrium concentrations $c_i^{\ eta}$ in the phase eta
 - chemical potentials of the elements
- Derive the <u>Chemical Driving Force</u> Δg_u

ClaNG / Nucleation

When Δg_u is known, the critical radius r_c can be derived

$$r_c = \frac{2\gamma \cdot V_m}{\Delta g_u}$$

γ: interfacial energy (model input)

The nucleation rate is then given by the classical theory of Becker & Döring

$$\dot{N} = N_0 \cdot Z \cdot \beta \cdot \exp\left(-f_{het} \cdot \frac{\Delta G(r_c)}{k_B \cdot T}\right) \cdot \exp\left(\frac{-\tau}{t}\right)$$

Z: (Zeldovich factor) normalization variable describing the dissolution of nuclei

 β : rate at which solute atoms join the critical radius

 $\Delta G(r_c)$: Gibbs energy for a spherical nucleus

 $k_{\scriptscriptstyle B}$: Boltzmann constant

 f_{het} : scaling factor for heterogeneous nucleation (0.1 ... 1.0)

ClaNG/ Growth & Coarsening

Assumption: precipitate growth diffusion controlled in Al alloys

ClaNG treats growth and coarsening in a single equation

- A particle above the critical radius grows
- A particle below the critical radius dissolves

The growth law used in ClaNG derives from <u>Zener</u>'s formulation (spherical particles)

$$v = \frac{dr}{dt} = \frac{c^{\alpha 0} - c^{\alpha / \beta}(r)}{c^{\beta} - c^{\alpha / \beta}(r)} \cdot \frac{D}{r}$$
$$c^{\alpha / \beta}(r) = c_{eq}^{\alpha / \beta} \cdot \exp\left(\frac{2\gamma \cdot V_m}{R_g T \cdot r}\right)$$

Gibbs-Thomson concentration at the interface

Evolution with time

evolution of the whole number and size distribution f(r,t) by combining the nucleation rate and the growth law in the continuity equation (discretization in radius classes, e.g. 1 nm)

For every radius r_i at $t+\Delta t$, one determines its image $g(r_i)$ at t using a Runge-Kutta method

$$N_{i}(t + \Delta t) = N_{i}(t) + \int_{g(r_{i})}^{r_{i}} f(r,t) \cdot dr - \int_{g(r_{i+1})}^{r_{i+1}} f(r,t) \cdot dr \quad (+\dot{N}_{i}^{nucl} \Delta t)$$

$$(Robson, Acta Mater. 51, 2003)$$
(14) 2008-06-05

ClaNG Modell "<u>Cla</u>ssical <u>N</u>ucleation and <u>G</u>rowth"

Use of Al foil

thickness range 6 ... 200 μm

Use

- industrial applications (heat exchanger, cable mantling, electronics, ...)
- packaging applications

(17) 2008-06-05

Composition of most important foil alloys 1xxx, 8xxx

Al-Fe-Si phase diagram (0.07%Si) FactSage (database AlTT15)

HA 1200-N, Scheil-Diagram FactSage (database AITT15)

HYDRO

HA 8021-F, Scheil-Diagram FactSage (database AlTT15)

Experimental validation: microprobe investigations in 8xxx transfer gauge material

Pos.	Si	Mn	Fe	Rest Al
wie 1	0,5	0,1	35,6	
wie 5	0,5	0,1	32,5	
wie 8	0,5	0,1	31,6	
wie 13	0,4	0,1	30,9	
wie 14	0,3	0,1	30,3	
außerhalb Bild *	0,4	0,1	30,0	

Mechanical properties of most important foil alloys (soft)

Impact of final annealing on microstructure and properties of Al foil

Thermal stability of AI blister foil

ClaNG results / large particles Al₃Fe-constituents (>0.25µm)

ClaNG results / small dispersoids (<0.25µm)

Impact of inter-annealing temperature on solute Fe

Summary and Conclusions

Through-process modeling: coupling of models for simulating the evolution of

- deformation
- softening (recovery and recrystallization)
- micro-chemistry
- properties

The ClaNG model (ChemApp) allows analysing the evolution of micro-chemistry (solutes, particles) along the process chain

www.hydro.com