DYNAMIC PROGRAMMING USING THE SIMU-SAGE COMPONENT LIBRARY
AND ITS APPLICATION TO THE SIMULATION OF THE CEMENT CLINKER BURNING PROCESS
Contents

1. Dynamic programming – Definition and introduction
2. Development of SimuSage based components
3. Cement clinker burning process
4. Simulation purpose and layout
5. Simulation results
6. Outlook
1. Dynamic programming
Mathematics and computer science

- Definition
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- Algorithm
1. Dynamic programming
Mathematics and computer science

- **Definition**
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- **Algorithm**
 - Break the problem into smaller sub problems
1. Dynamic programming
Mathematics and computer science

- Definition
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- Algorithm
 - Break the problem into smaller sub problems
1. Dynamic programming
Mathematics and computer science

- **Definition**
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- **Algorithm**
 - Break the problem into smaller sub problems
1. Dynamic programming
Mathematics and computer science

- **Definition**
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- **Algorithm**
 - Break the problem into smaller sub problems
 - Solve these simple problems
 - Use these optimal solutions to construct an optimal solution for the original problem
1. Dynamic programming

Mathematics and computer science – Fibonacci numbers

\[
F(n) = \begin{cases}
0 & \text{if } n = 0; \\
1 & \text{if } n = 1; \\
F(n - 1) + F(n - 2) & \text{if } n > 1.
\end{cases}
\]

\[
\text{function } \text{Fib}(n: \text{Integer}): \text{Integer};
\begin{align*}
\text{begin} \\
\text{if } n = 0 \text{ then} \\
\phantom{\text{end;}} \text{Result} := 0 \\
\text{else if } n = 1 \text{ then} \\
\phantom{\text{end;}} \text{Result} := 1 \\
\text{else} \\
\phantom{\text{end;}} \text{Result} := \text{Fib}(n - 1) + \text{Fib}(n - 2); \\
\text{end;}
\end{align*}
\]

\[
F(5) = F(4) + F(3)
\]

\[
F(4) = F(3) + F(2)
\]

\[
F(4) = (F(2) + F(1)) + (F(1) + F(0))
\]

\[
F(4) = ((F(1) + F(0)) + F(1)) + (F(1) + F(0))
\]

- **Definition**
 - Method of solving problems
 - Overlapping sub problems
 - Optimal substructure

- **Algorithm**
 - Break the problem into smaller sub problems
 - Solve these simple problems
 - Use these optimal solutions to construct an optimal solution for the original problem
1. Dynamic programming

Programming language

```
procedure CalcAllFibs();
var Fibs: array of Integer;
    n, i: Integer;
begin
    GetN(n);
    SetLength(Fibs, n);
    Fibs[0]:= 0;
    Fibs[1]:= 1;
    for i:= 2 to (n – 1) do
        Fibs[i]:= Fibs[i – 1] + Fibs[i – 2];
    WriteFibs(Fibs);
end;
```

Data input for the number of Fibonacci numbers

Dynamic allocation of memory

Output

```
Fibs = [ ] [ ] [ ] [ ] [ ]
```
1. Dynamic programming
Application for process simulation

- Break the process into sub-processes
- Break sub-processes into characteristic process steps
- Develop models for these process steps
- **Generate components for process steps**
- Create and connect process steps according to the total process model
- Solve the model by an iterative procedure
2. Development of SimuSage based components

Introduction

- Delphi components
 - Properties
 - Methods
 - Events

- TPbGttBalance
 - Temperature
 - calculate
 - OnBeforeCalculation
2. Development of SimuSage based components

Partial equilibrium reactor

- Parameters and specifications
 - Partial thermodynamic equilibrium
 - Model for the amount of ‘non-equilibrium’
 - Defined enthalpy input
 - Homogeneous temperature of outgoing stream
2. Development of SimuSage based components

Partial equilibrium reactor – multiple input streams
3. Cement clinker burning process

- Typical plant layout
 - Raw mix: 250 t/h
 - Heat: 2.900 – 3.400 kJ/kg clinker
 - Clinker: 150 t/h
 - Off gas: 220,000 m³/h

- Volatile recirculation
3. Cement clinker burning process
4. Simulation purpose and layout

- **Project objectives**
 - Determination of the chemical loading of refractories
 - Calculation of the infiltration depth of volatiles in the lining
4. Simulation purpose and layout

- Project objectives
 - Determination of the chemical loading of refractories
 - Calculation of the infiltration depth of volatiles in the lining
4. Simulation purpose and layout

Project objectives

- Determination of the chemical loading of refractories
- Calculation of the infiltration depth of volatiles in the lining
4. Simulation purpose and layout

1st evaluation with focus on the recirculation

- Simplified setup of reactors
- Definition of input streams
- Assumptions for further input streams
- Solving mass and energy balances
4. Simulation purpose and layout

Total process model

- Reactors in a total process model
 - Preheater stages 4 – 6
 - Calciner(s) 0 – 2
 - Kiln segments up to ~ 1/m
 - Cooler segment(s) 1 – 300
4. Simulation purpose and layout

Kiln segment model

- Material transport according to Kramers and Crookewitt (1952)
- Heat transfer according to Frisch and Jeschar (1983)
- Separation of feed into segments according to temperature distribution
4. Simulation purpose and layout

Kiln segment model

- Material transport according to Kramers and Crookewitt (1952)
- Heat transfer according to Frisch and Jeschar (1983)
- Separation of feed into segments according to temperature distribution
5. Simulation results
Simulation of a real-life kiln

- Setup of reactors
 - 4 Preheater stages
 - 1 Calciner
 - 35 Kiln segments (à 2 m)

- Facts and figures
 - Complexity similar to FE-simulations
 - ~4000 SimuSage components
 - ~1.6 \times 10^{15} floating point operations
 - ~250,000 calculated equilibria

Rashadiya kiln #1 (Jordan) – Kiln audit 08/07
5. Simulation results

The graph illustrates the evolution of various phases and temperatures along the distance from the kiln inlet. The axes are labeled as follows:

- **Y-axis (Phase amount [%])**
- **X-axis (Distance from kiln inlet [m])**

Key components and their respective temperatures include:

- **Fe₂O₃**
- **MgO**
- **SiO₂**
- **CaSO₄**
- **C₃S**
- **C₃A**
- **C₂S**
- **C₄AF**
- **CaO**
- **AS₂**
- **CaCO₃**

The graph shows how the phase amounts and temperatures change as the distance from the kiln inlet increases. The temperature markers, **T_{gas}**, **T_s**, and **T_{s,top}**, highlight critical temperatures along the process path.
5. Simulation results
6. Outlook

Development of a user interface

- User interface
 - Data input
- User interface
 - Simulation layout
- User interface
 - Simulation results

- Database
 - Plant layout
 - Simulation layout and data
 - Material data
 - Material input streams
 - Simulation results
6. Outlook

Timetable and further procedure

1/06

1/07

Simplified preliminary model

Preheater model

1/08

User interface

Kiln segment model

Kiln model tested and verified

1/09

Cooler model

Total process model

Plant simulation

10/08

GEN-RE-Workshop-06_08