GTT - TECHNOLOGIES

Stainless steel slags and the use of ChemApp

Bart Blanpain

Dirk Durinck, Sander Arnout, P. Tom Jones, Muxing Guo, Frederik Verhaeghe, Patrick Wollants

> Thermodynamics in Materials Engineering Dept. Metaalkunde en Toegepaste Materiaalkunde Katholieke Universiteit Leuven, Belgium

> > GTT - 5 June 2008

http://www.mtm.kuleuven.be/Research/THERMO

Outline

Introduction

EAF process in stainless steel production

Slag stabilisation and microstructure calculation

GTT - TECHNOLOGIES

Katholieke Universiteit Leuven

GTT - TECHNOLOGIES

SiSBC

Thermodynamics in **Materials Engineering Research Group** Department of Metallurgy and Materials Engineering

I. Pyrometallurgical processing

- Vessel integrity
- Slag practice and properties
- Steel cleanliness
- Modelling

Centre for high temperature processes, metallurgy and refractory materials

- Cooperation with industrial partners active in high temperature metals processing: ArcelorMittal, Heraeus Electro-Nite and Umicore
- Fly wheel function for intense collaboration through substantial research projects and doctoral research programs

II. Phase relations in materials systems

- Determination and optimisation of phase diagrams in metallic systems
- Phase relations in slag systems
- Thermodynamics of nanomaterials systems

III. Microstructure evolution modelling

- Grain growth
- Lead-free solder systems
- Dissolution of ferro-alloys in liquid steel
- Solidification of slags

GTT - TECHNOLOGIES

Stainless steel slags

Steel production sites in Belgium

Steel production sites in Belgium

Stainless steel slags

General

- By-product/waste of stainless steel production
- Metallurgical functions:
 - * Oxidation shielding
 - * Impurity removal
 - * Thermal insulation
- Amounts
 - Slag-to-steel ratio: 275 kg slag / 1000 kg steel
 - Global stainless steel production: 25 Mt steel (source: ISSF,IISI)

\rightarrow ~ 7 Mt stainless steel slag / year

Assumptions: density = 2.5 ton/m^3 , Gizeh pyramid dimensions = 230m.230m.137m

World steel production: ~ $1.25 \cdot 10^9$ tons

Slag/steel ratio: 1/3 ~ 1/4

World iron and steel slag production: ~ $350 \cdot 10^6$ tons

Assumptions: density = 2.5 ton/m^3 , Gizeh pyramid dimensions = 230m.230m.137m

Stainless steel production

- 3-step process (before casting)
 - EAF: scrap melting
 - AOD/VOD: de-C and de-S
 - Ladle refining: de-S

Overview slag compositions

Motz and Kuhn., Scanmet II, 2004

GTT - TECHNOLOGIES

DBS:S

Process Modelling: Chromium recovery and foaming in the EAF

S. Arnout, F. Verhaeghe, B. Blanpain, P. Wollants, R. Hendrickx, G. Heylen, Steel Research International, <u>77</u> (5) (2006), 317 - 323
S. Arnout, D. Durinck, M. Guo. B. Blanpain, P. Wollants, J. American Ceramic Society, 91 (2008) 1237-1243
M.X. Guo, D. Durinck, P.T. Jones, G. Heylen, R. Hendrickx, R. Baeten, B. Blanpain, P. Wollants, Steel Research International, <u>78</u> (2) (2007), 117 - 124
D. Durinck, P.T. Jones, M.X. Guo, F. Verhaeghe, G. Heylen, R. Hendrickx, R. Baeten, B. Blanpain, P. Wollants, Steel Research International, <u>78</u> (2) (2007), 125 – 135

Slag in the EAF

The EAF process

Slag issues during EAF refining

- ➤ Early liquid slag formation → prevent over-oxidation of Cr
- ➢ Slag foaming → increase furnace productivity, refractory lifetime, energy and material efficiency
- ➤ Immobilisation of CrO_x → enhance slag valorisation potential

All affected by high-T slag microstructure

Furnace types

 Two distinct 120t EAFs
 ➤ EAF1 = Eccentric Bottom Tapping Furnace No C/O₂ lance → no foaming
 ➤ EAF2 = Spout Tapping Furnace C/O₂ lance → slag foaming

EAF operations

Min.	Operation	Min.	Operation	Abbr.	
1-6	Charging 1st bucket				
7-26	Arc on	12	Start of calculations	S	
		17-20	Calcia additions	Са	
		. 18	Dolomite and chamotte add.	D	
28	Charging 2nd bucket				
29-70	Arc on	41	Dolomite and calcia addition	Ca,D	
		49-63	Calcia additions	Са	
		55	O2 injection	0	
		63	63 C/O2 injection		
		. 67	Fe-Si and fluorspar addition	F	
74			Tapping	Т	

Dynamic model

Temperature evolution

Steel composition

Phases in the slag

Slag Sampling

Schematic diagram of EAF process (STF) and sampling moments

Results – Evolution slag composition

- Evolution in STF-slag composition:
 - (C+M)/S (basicity) decreases during process (FeSi additions for Crrecovery)
 - FeO drops significantly
 - CrO_x mainly drops during tapping
- Evolution in EBTF-slag composition:
 - \succ Higher final CrO_x levels due to tapping procedure

Observed range of global slag composition during STF-process

Results – Final CrO_x values (tapping)

- Difference in Cr recovery due to tapping procedure
 - EBTF: poor mixing
 - STF: excellent mixing

Evolution 'Cr₂O₃' level (global slag composition) during STF-process

Slag microstructure

Results – Evolution slag microstructure

STF – Before blowing (bar = 250 μm) STF – After blowing (bar = 250 μm)

STF – After tapping (bar = 250 μm)

Process time

Slag microstructure – metal droplets

- Type 1: large (>50 µm): stainless steel particles (originating from steel bath)
- □ Type 2: small (< 5 µm)
 - Type 2a (25%): stainless steel composition
 - Type 2b (75%): Fe/Cr (no Ni) from two reactions:

 $FeO_{slag}(I) + CO(g) = Fe(I) + CO_2(g)$

 $CrO_{x,slag}(I) + x.CO(g) = Cr_{Fe}(I) + x.CO_2(g)$

Composition metallic droplets in the slag

Slag microstructure – spinel particles

- □ Size: ~20 µm, shape: angular
- Present at high temperature
- □ Composition: (Mg,Fe,Mn)O.(Cr,Al)₂O₃
- Evolution in composition (see table)
- Amount of particles decreases with process time (~ FeSi addition & Cr-recovery)
- STF-samples after tapping: almost no particles left

Spinel particles in slag (bar = 100 μm)

_	Sample	Cr ³⁺	Al ³⁺	Mg^{2+}	Fe ²⁺	Mn ²⁺	Ca ²⁺	M^{3+}/M^{2+}
	448032 A	25.0	2.6	6.4	5.9	1.8	0.9	1.8
	448032 B	25.0	2.7	7.4	2.2	2.9	1.4	2.0
	448032 C	24.9	3.6	8.3	0.8	3.4	0.9	2.1
	448032 D	24.9	3.5	9.2	1.1	2.5	0.9	2.1
	448032 E	19.5	6.3	12.3	0.3	1.6	0.7	1.8
				2027				And a second

Compositional evolution spinel particles during STF-process

Slag microstructure – spinel particles

- Formation and dissolution of spinel particles controlled by: Cr₂O₃/Al₂O₃ (I) + MgO (I) ←→ MgO.(Cr,Al)₂O₃ (s)
- Equilibrium influenced by T, pO₂ (influences CrO/Cr₂O₃ level) , C+M/S, CrO_x and MgO level
- □ FactSage 5.2 + Chemapp
 V5.1.6 → qualitative phase diagram
- □ Process evolution shown by arrow: from L/spinel → L region without spinel

Qualitative phase diagram: C/S, p, $p_{\rm O2}$ and T are kept constant

Results: liquidus

 \Box Tests in different known p_{O2}, no Al₂O₃

Results: liquidus

 \Box Tests in known p_{O2}, changing Al₂O₃

Other examples of process modelling

- VOD stainless steel refining
 - ➤ S. Smets et al., unpublished.
- Zinc fuming (including freeze lining formation)
 - Cooperation with E. Jak and P. Hayes
 - ➤ K. Verscheure et al., Met. Trans. B, <u>38B</u> (2007), 13 33

Lead Blast Furnace

- Cooperation with E. Jak and P. Hayes
- F. Verhaeghe et al., Proc. CSIRO, 4th Australian Melt Chemistry Symposium, 10-11 December 2002
- Exergy analysis of pyrometallurgical processes
 B. Klaasen et al, master thesis K.U.Leuven, 2008 (in dutch)

GTT - TECHNOLOGIES

Slag Valorisation: the importance of microstructure

Roadways to a stable slag product

D. Durinck, S. Arnout, G. Mertens, E. Boydens, P.T. Jones, J. Elsen, B. Blanpain, P. Wollants, JOURNAL OF THE AMERICAN CERAMIC SOCIETY 91(2008) 548-554

D. Durinck, P.T. Jones, B. Blanpain, P. Wollants, G. Mertens, J. Elsen, Journal of The American Ceramic Society, 90 (4) (2007), 1177 - 1185

Slag valorisation chain

Slow slag solidification

Slag valorisation chain

Main applications:

- Flemish environmental law: "aggregates within other products"
- → Concretes
- Cementitious concrete
- Asphalt concrete

Slag valorisation chain

Required slag properties for aggregate for asphalt concrete:

- Particle size > 2 mm
- Resistance against polishing
- Abrasion resistance
- Strength
- Cr leaching
- Volume stability

a de la secola de la

Slag disintegration

FS/CC slag after cooling: Too fine to valorise

Slag disintegration

Visual observation at the slag yard

Cause of slag disintegration

Presence of 2CaO.SiO₂ (C₂S)

- several phase transformations during cooling
- β to γ transformation causes a 12% volume expansion

Chan et al., J. Am. Cer. Soc., 1992

What can be done?

Internal slag recycling

- Benefits: Ca resource, fluxing agent, possible heat source
- Problems: Logistics (dry slag required / molten slag addition)
- Physical slag stabilisation
 - Grain size
 - Matrix constraint
 - Cooling rate
- Chemical slag stabilisation
 - > Stabilise β -C₂S to room temperature by doping

Laboratory experiment

<u>CaO-SiO₂-MgO</u>

- Well known system
- p_{O2} independent
- Stainless steelmaking slag
- Peritectic reaction

Cooling rate 1°C/min

- Simple cooling path
- Used in other references
- Comparable to industry
 (not equal!)

Common approaches to solidification modelling

Thermodynamic equilibrium model

Assumptions

- Equilibrium @ L/S interface
- Infinitely rapid diffusion in L
- Infinitely rapid diffusion in S

Amount of A: $J_{s,equil}$ $a_i + b_i$

Scheil-Gulliver model

 $T_1 > T_2 > T_3 > T_4$

Assumptions

- Equilibrium @ L/S interface
- Infinitely rapid diffusion in L
- No diffusion in S

$$\frac{\text{Amount of A:}}{f_{s,SG}} = \sum_{i=1 \to N} \frac{b_i}{a_i + b_i}$$

Microstructure

Air-cooled solidification

pO₂ independent systems (*i.e.* CaO-MgO-SiO₂)

- Scheil-solidification model
- Lab experiments + QXRD
- Validated with industrial samples

Air-cooled solidification

Preliminary results

Microstructural calculations

- CaO-SiO₂-MgO-CrO_x model system pO₂ dependent
 - > D. Durinck et al., J. Am. Cer. Soc., accepted
- Description of the formation of freeze lining systems
 - Cooperation with E. Jak and P. Hayes
 - M. Campforts et al., Met. Trans. B., 38B(2007)6, p.841-851
- Phase field modelling for the solidification of oxide systems
 - Cooperation with GTT and Access
 - ➤ J. Heulens and N. Moelans

Conclusions

Basic research tools in high temperature metallurgical research

Thermodynamic modeling (ChemApp and FactSage)

- Process modelling
- Microstructure calculations
- Laboratory and industrial experiments

Microstructural and (micro-)analytical characterization