

# Using ChemApp and ChemSage data files with Aspen Plus

Herzogenrath – 20 June 2007 - GTT User Group Meeting Wim Van Wassenhove – Business Consultant Simulation & Optimisation Aspentech



#### Overview

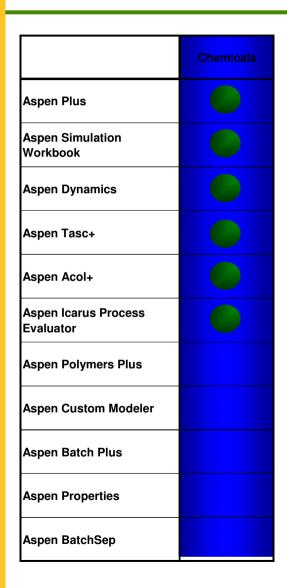
- Who is Aspentech, what do we do?
- Why use use ChemApp inside Aspen Plus
- Interface in version 2004.1 and previous
- Changes in 2006
- Q&A



- Is the leading provider of software and services to process industries, with \$320M+ annual revenues
  - Engineering & Innovation (PLM)
  - Plant Operations (MES)
  - Supply Chain Management (SCM)
- Offers 20+ years of experience in serving the process industries
  - Founded in 1981; public company since 1994 (NASD:AZPN)
  - 1,500+ employees operating in 20 offices worldwide
  - World-class industry partners and global support
- Provides proven solutions that reduce costs, improve margins, increase capital efficiency and improve customer loyalty
- Is the only provider with a unified offering for Enterprise Operations Management (EOM)



## Market Segments & Products


|                                            | Engineering & Construction | Exploration & Production | Refining & Marketing | Chemicals | Polymers | Spec Chem | Pharma | Growth<br>Markets |
|--------------------------------------------|----------------------------|--------------------------|----------------------|-----------|----------|-----------|--------|-------------------|
| Process Engineering<br>Process Development |                            |                          |                      |           |          |           |        |                   |
| Planning & Scheduling                      |                            |                          |                      |           |          |           |        |                   |
| Advanced Process<br>Control                |                            |                          |                      |           |          |           |        |                   |
| Production Management & Execution          |                            |                          |                      |           |          |           |        |                   |
| Supply & Distribution                      |                            |                          |                      |           |          |           |        |                   |

Identifies relevant point products available





# aspenONE for Chemical Process Engineering



#### V2006 for Chemicals notes:

- New feature to update dynamic models from steady-state models – first step towards tight integration of AD and Aspen Plus
- Support for AD/ACM dynamic simulation in Aspen Simulation Workbook
- New Plate+ plate & frame exchanger module integrated into Aspen Plus
- New Database infrastructure for Aspen Properties



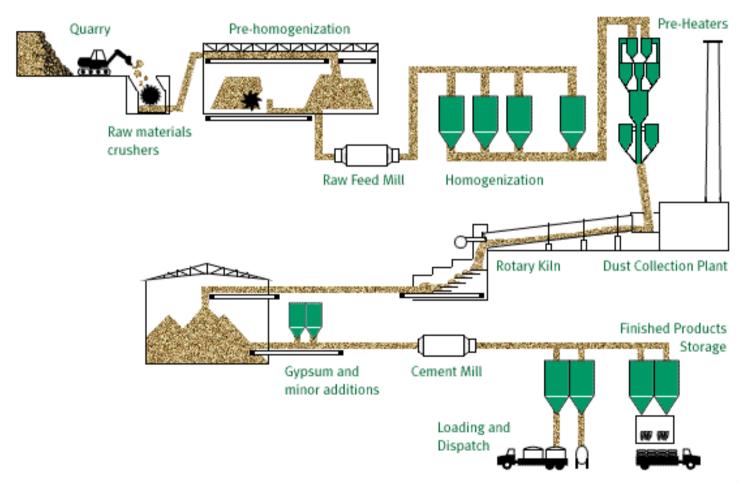


#### aspenONE Users in Minerals Applications

- Aspen Plus used to model cement process
  - UBE
  - Finnsementti
  - Cementa
- HuntsmanTioxide
  - Use ACM for solid phase reactions in a rotary kiln
- ALCAN Aluminium: Simulation of Arvida facilities.
- Umicore: Zinc and precious metal production. Pilot plant scale up.
- CODELCO: Portrellios smelting operations and solvent extraction at Chuquicamata.
- Corus: Exergy analysis of blast furnaces and coke oven gas treatment.
- A Steel Company (Japan): Coke oven gas treatment.
- Buss AG: Model the production of HF from fluorospar





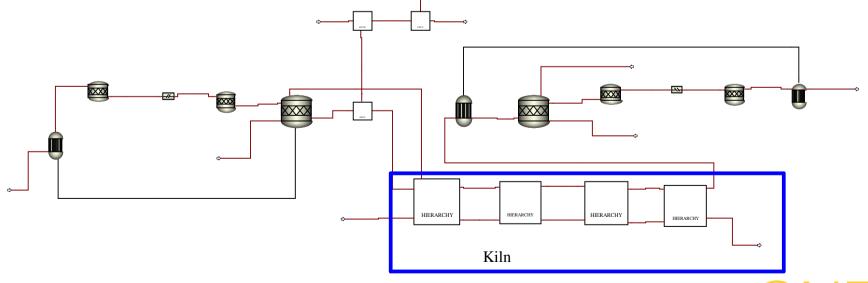

#### Overview

- Who is Aspentech, what do we do?
- Why use use ChemApp inside Aspen Plus
- Interface in version 2004.1 and previous
- Changes in 2006
- Q&A



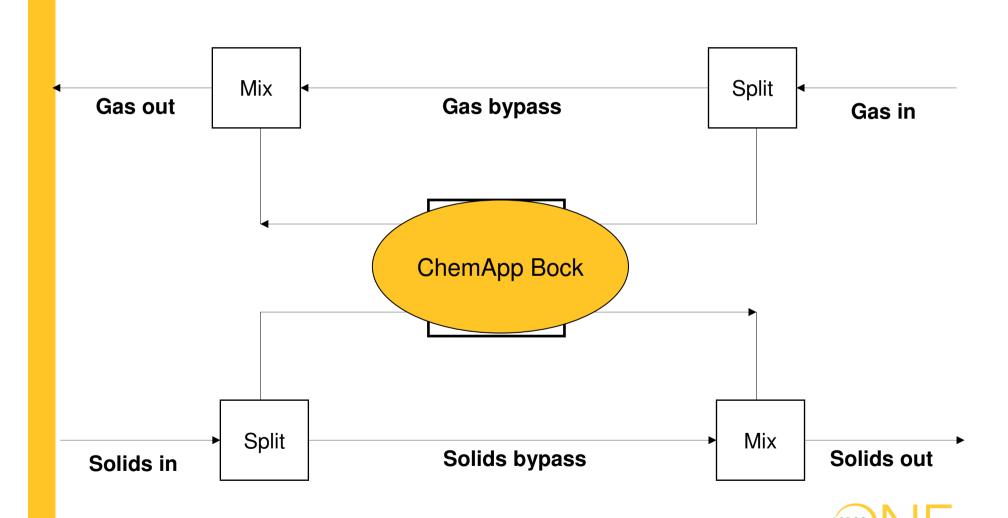


## A process has many connected operations, example, a Cement Process









#### Cement model in Aspen Plus

- Standard Unit Op models used to model pre-heating, cyclones, fuel combustion for example
- The kiln is modelled as a series of linked Gibbs Equilibrium reactor blocks with counter-current gas and solids flow
  - Simultaneous gas-liquid-solid chemical and phase equilibrium





# aspentech Model scheme of a reaction cell without thermal equilibrium





#### Overview

- Who is Aspentech, what do we do?
- Why use use ChemApp inside Aspen Plus
- Interface in version 2004.1 and previous
- Changes in 2006
- Q&A





## When does it get difficult

- Aspen plus comes with old FACTPCD
- You want to use a newer version
- You want to add you own components





#### In Short

- Mapping Aspen Plus components
- Making the Aspen Plus Databanks
  - Making the main calculation engine databank file
  - Making the Aspen Plus User Interface Databank
- Using the databank in Aspen Plus
  - Selecting Aspen Plus component databanks
  - Change the phase name mapping file in Aspen Plus
  - Setting the name of the ChemSage data file





## Mapping Aspen Plus components

- Components in Aspen Plus are identified by the component ID
  - This is an 8 letter name.
- The Aspen+ component name is used to map to ChemSage components
- Aspen+ has a standard databank that maps the FACT 5.0 database
- For other components a "user-added" Aspen+ databank is needed
  - The component name cannot be changed for a user-added component entered directly in Aspen+
- The user-added Aspen+ databank needs:
  - Component names
  - Formulae
  - Molecular weights
  - The main physical property data come from the ChemSage data file





#### Mapping Rules

- ChemApp component names in Aspen+ Plus have two parts
  - NAME:PHASE, Example: C:G1 = Carbon in the gas phase (G1)
  - Phases may be pure component phases or solution phases
- Pure solid components in the ChemSage data files naming syntax:
  - ChemicalFormula\_Description(solid phase number)
    - e.g. C\_Graphite(S), or Fe3C\_Cementite(S2)
  - Aspen Plus name should use "ChemicalFormula" & "solid phase nbr"
    - C\_Graphite(S) maps to C:S1
    - Fe3C Cementite(S2) maps to FE3C:S2
- ChemSage datafiles can contain data for mixture or solution phases
  - The PHASE in the Aspen+ component name is limited to 4 letters
  - File factsoln.txt maps the Aspen+ PHASE to the Chemsage name
- For example, a component C\_(carbon) in phase LIQUOR
  - Could be called C:LQOR in Aspen+
  - factsoln.txt needs to be updated with LQOR / LIQUOR mapping





### Mapping Examples

| ChemSage name  | Phase      | Description       | Aspen+ name |  |
|----------------|------------|-------------------|-------------|--|
| С              | Gas        | C in gas phase    | C:G1        |  |
| C2             | Gas        | C2 in gas phase   | C2:G1       |  |
| 0              | Gas        | O in gas phase    | O:G1        |  |
| O2             | Gas        | O2 in gas phase   | O2:G1       |  |
| O3             | Gas        | O3 in gas phase   | O3:G1       |  |
| Si             | Gas        | Si in gas phase   | SI:G1       |  |
| Si2            | Gas        | Si2 in gas phase  | S12:G1      |  |
| Si2C           | Gas        | Si2C in gas phase | SI2C:G1     |  |
| C(s)           | pure solid | solid C           | C:S1        |  |
| Si(s)          | pure solid | solid Si          | SI:S1       |  |
| SiC(s)         | pure solid | solid SiC         | SIC:S1      |  |
| SiO2_quartz(s) | pure solid | solid quartz      | SIO2:S1     |  |

- In Aspen+ the component type should reflect the state
  - Liquids and gases designated as Conventional (the default)
  - Solids and solid solutions designated as Solids
- This is useful when assigning products to substreams



#### Making Aspen+ user databanks

- These instructions are for v12.1, 2004 and 2004.1 of Aspen+
- Aspen+ user databanks have two separate parts:
  - One databank for use by the User Interface
    - this contains component name, formula and mol weight.
  - A second databank for use by the Aspen+ Calculation Engine
    - Normally this databank contains the full data for those components
    - BUT here this databank only contains component names and mol weights
- Aspen Plus User databanks come in different formats
  - e.g. In-House, USRPP1
  - Instructions to create can be found in the Aspen+ documentation
  - This document explains how to make a USRPP1 type of databank





#### Making the calculation engine databank

- Make a text input file called xxxx.INP
- Use Notepad or similar text editor
- Format should be similar to the example (next slide)





## Example DFMS input file

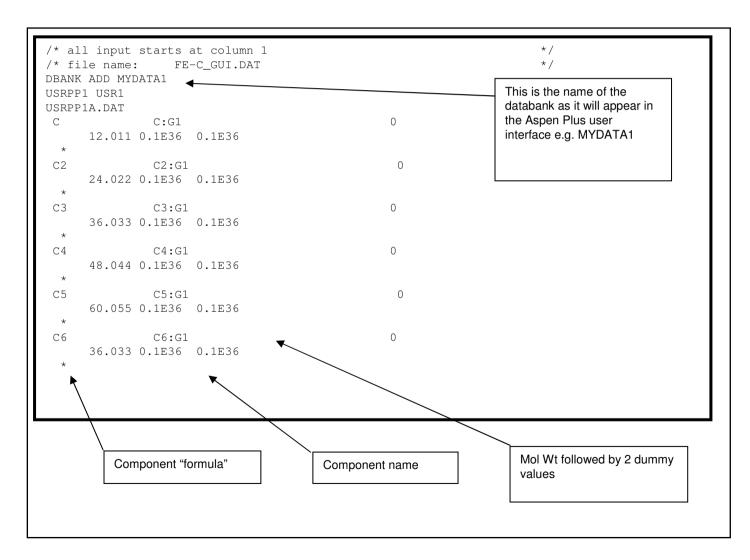
```
; FILE NAME: FE-C_DATA_INPUTFILE.INP
                                                  Lines starting with; are comments
FILE USRPP1A USR1 NEW
WRFILE USR1
                                                       These 2 lines should not
NEW-COMP
   'C:G1'
                'C'
                                                       be changed
                'C2'
   'C2:G1'
   'C6:G1'
                'C6'
                'C7'
   'C7:G1'
   'FE:G1'
                'FE'
                                                 NEW-COMP is the start of the
   'C:LIQU'
                  'C(LIQ)'
   'FE:LIOU'
                  'FE(LIO)'
                                                 component names and formulae in
   'FEC3:BCC_'
                  'FEC3 (BCC) '
                                                 single quotes. Separated by
   'FEV:BCC_'
                 'FEV (BCC) '
   'FEC:FCC '
                 'FEC (FCC) '
                                                 spaces. Each component
   'FE:FCC_'
                 'FE (FCC) '
                                                 separated by a /
   'C:S1'
                 'C(S)'
   'FE3C:S2'
                 'FE3C(S)'
            MW 1 / DHFORM 1 / DHSFRM 1
NEW-PROP
PROP-DATA
            PROP-LIST
                            MW 0
                                      / DHFORM 0 / DHSFRM 0
                  'C:G1'
        PVAL
                          12.011 / -9999 / -9999
        PVAL
                  'C2:G1' 24.022 / -9999 / -9999
        PVAL
                  'C6:G1' 72.066 / -9999 / -9999
        PVAL
                  'C7:G1' 84.077 / -9999 / -9999
                                                          This part contains the
        PVAL
                  'FE:G1' 55.847 / -9999 / -9999
        PVAL
                  'C:LIOU' 12.011 / -9999 / -9999
                                                          MolWts along with dummy
        PVAL
                  'FE:LIQU' 55.847 / -9999 / -9999
                                                          values for enthalpy and
        PVAL
                  'FEC3:BCC_' 91.880 / -9999 / -9999
        PVAL
                  'FEV:BCC ' 55.847 / -9999 / -9999
                                                          entropy of formation.
        PVAT.
                  'FEC:FCC_' 67.858 / -9999 / -9999
                  'FE:FCC_' 55.847 / -9999 / -9999
                  'C:S1'
                             12.011 / -9999 / -9999
                  'FE3C:S2' 179.552 / -9999 / -9999
        PVAL
END-INPUT
```





#### Making the calculation engine databank

- Start the Aspen Plus command window
- Change the working folder to where your input file is stored
- Run DFMS with this command: DFMS input-file runid
  - input-file is the name of the \*.INP input file made above
  - runid is the name used for the output report from DFMS
- This will create the engine databank
- This file should be in the Aspen+ input file folder






- The input file for the User Interface databank should be named \*.DAT
- Format it as the example on the next slide











- In Windows Explorer go to the folder: C:\Program Files\AspenTech\APrSystem 2004.1\GUI\Custom
- Locate file tbprop.dat (the MMTBS Driver File)
- Open tbprop.dat in a text editor
- Add an additional line referencing your xxxxx.DAT
  - INCLUDE c:\aspen\chemapp\FE-C\_GUI.DAT
- Start the Aspen+ Simulation Engine command window
- Change location to folder with tbprop.dat
- Next type command: mmcustom mmtbs
- Now all local records have been updated





- Verify that the User Interface databank is correct
  - Start Aspen Plus
  - Open file custom.bkp
    - Located in C:\Program Files\AspenTech\APrSystem 2004.1\GUI\Custom
  - This input file uses any local databanks.
  - Make sure you can find and use the new databank
- If the above steps work ok, the User Databank is correct
- Install the new user interface databank file
  - Open the Simulation Engine command window and type: custinst
- That finishes the database installation





### Using the new databank in Aspen+

- Update phase mapping file if needed
  - Only if your ChemSage data file has named solution phases
  - This mapping file is called factsoln.txt and is found in the folder:
     C:\Program Files\AspenTech\APrSystem 2004.1\Engine\Xeq
  - Factsoln.txt is an ASCII text file
  - Update the second line to reflect total number of entries
  - Line format is:
    - A number: 2 for liquid and 3 for solid
    - The Aspen Plus phase name (4 letters or less)
    - The full phase name from the ChemSage data file.
- Selecting Aspen+ component databanks
  - Go to Components/Specifications and the Databanks Tab
  - Select MYDATA1 (or whatever name you gave it)
  - Deselect all others (except perhaps FACTPCD)



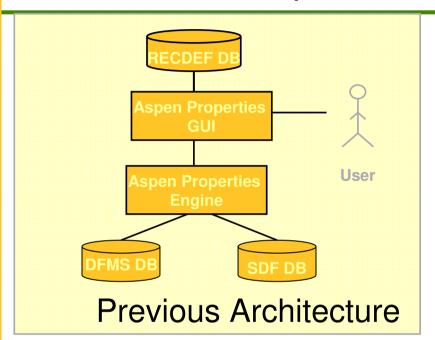


#### Setting the ChemSage data file in Aspen+

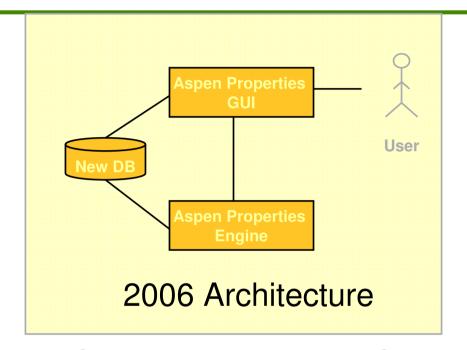
- Only use ASCII files (\*.dat) or transparent ChemSage files (\*.cst)
- The default ChemSage data file name is CHEMSAGE.CST
  - .CST files are called "Transparent" data files
  - An ASCII format data file can also be used with a file extension \*.DAT.
- A Calculator block can be used to set another name for the data file.
  - This could be a \*.CST file, or a \*.DAT file
  - This requires the use of a Visual Fortran compiler!
- For Fortran syntax, see example Aspen+ file called ChemSage.bkp
  - C:\Program Files\AspenTech\Aspen Plus 2004.1\Gui\Xmp\Chemapp
- This file can be imported into any Aspen+ simulation
- The calculator block executes first and sets two variables:
  - Ppfact\_FILEN: name of the ChemSage file, must be in local directory.
  - Ppfact\_CADBG: controls if debugging info is sent to the Control Panel






#### Overview

- Who is Aspentech, what do we do?
- Why use use ChemApp inside Aspen Plus
- Interface in version 2004.1 and previous
- Changes in 2006
- Q&A






#### New Features – Aspen Properties Enterprise Database Architecture



- Many databases: Engine and GUI.
   Data dispersed and duplicated
- Maintenance, customization difficult
  - No user-friendly GUI
  - Very limited customization
- Cannot be deployed enterprise-wide



- Single modern database, (MSDE & SQL server)
- Ability to add properties, comments, and other data
- User-friendly GUI for database management
- Utility to convert legacy Aspen
   Properties data bank filespen



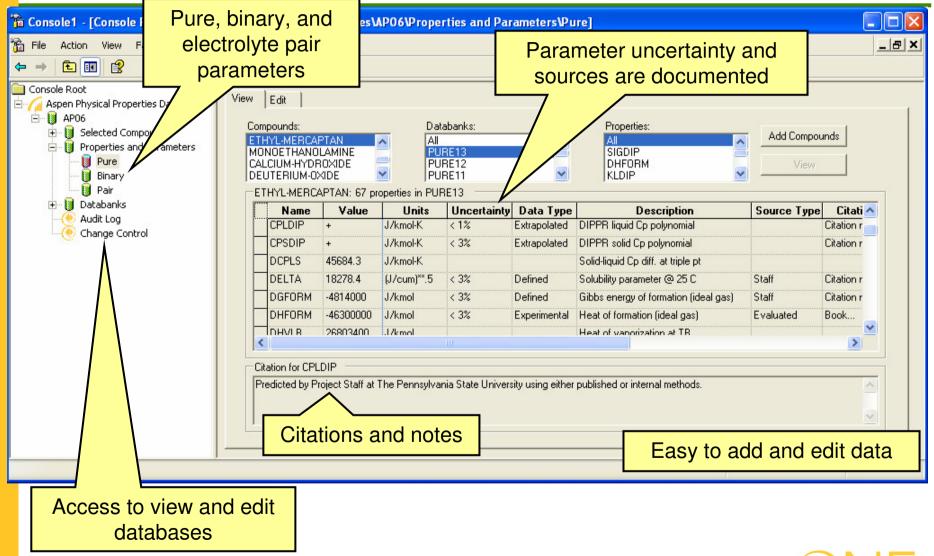
## **aspentech** Adding Components to the Enterprise Database

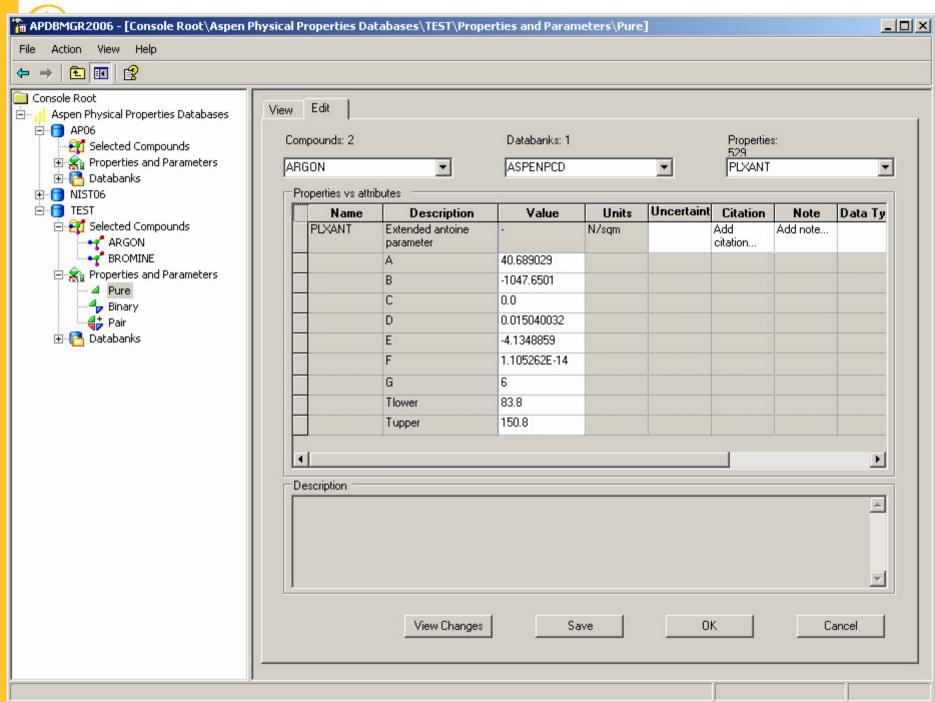
- When creating a user database, it is not necessary to customize the Aspen Plus and Aspen Properties simulation engine and GUI as was required in previous releases.
- Instead, you use the Database Manager...





### Aspen Properties Database Manager


#### The Database Manager:


- Allows you to view and create databases for use with the Aspen Properties Enterprise Database and products that use it.
- Is a database viewing and management tool. It is not intended to perform any property calculations.
- You can create a new database by cloning an existing database, or by importing legacy data files of the following types:
  - DFMS input files
  - TBS input files used to customize the GUI
  - Optional DIPPR access database
  - Optional molecular structure information (compressed mole files) that have been stored in an access database



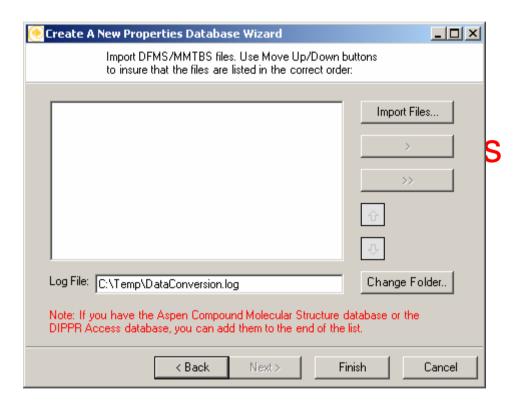



## Aspen Properties Database Manager





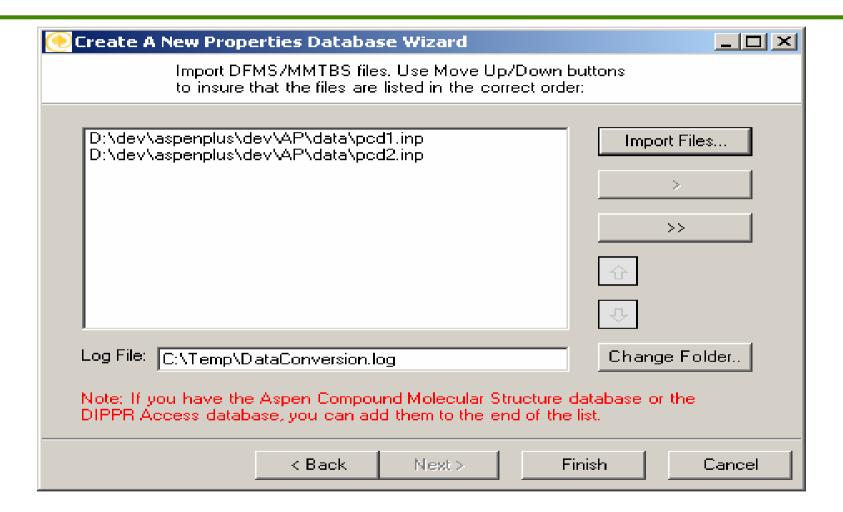



# aspentech Click on View Change button shows the summary of changes





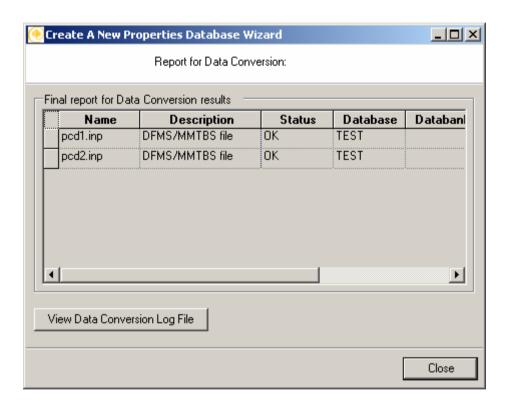



## Importing Legacy Files








### Importing Legacy Files







## Importing Legacy Files







## Questions?