

INTERACTIVE COUPLING OF THERMAL PROPERTIES CALCULATED THERMO CHEMICAL RESULTS WITH FEM SOLIDIFICATION SIMULATION PROGRAM

Haritz Sarriegi

20.06.2007

The full line of FEM Simulation

1. Introduction

- 2. Changes on thermophysical properties
- 3. Sensitivity analysis
- 4. Set up the progams
- 5. Conclusions
- 6. Future work

INTRODUCTION

- Thermo- physical and physical properties are critical data for solidification simulations.
- Latent heat release, solid fraction transformation, thermal conductivity, volume and density all as function of temperature are difficult to get experimentally.
- Lack of information → common to use binary alloy data to perform multi- component alloy calculations.
- Small variations in composition can have appreciable effects on properties. No sense to extrapolate from other alloys or binary alloy data.
- Cooling rate has also influence on those properties.
- Highly desirable to develop computer models for calculation of the thermo-physical and physical properties of multi- component alloys.
- Already some computational techniques available e.g. FactSage

OBJECTIVES

- Achieve a coupling of calculated thermo- physical properties with WinCast[®].
- Study influence of changing cooling rates and alloying elements on thermo- physical properties of an alloy.
- Evaluate how can the simulation results change.
- Using ChemApp, a thermodynamic calculation interface, a couple of programs pretended to set to obtain thermo physical properties.

www.rwp-simtec.de

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

5

CHANGES ON THERMO-PHYSICAL PROPERTIES

WinCast 🕷

- Computer modelling tools based on the CALPHAD (CALculation of Phase Diagrams) method commonly used to predict thermo- physical properties and phase equilibriums in multi component alloys.
- $\frac{1}{V} \cdot \frac{\partial \Phi}{\partial t} = -div J_{\Phi}$ Calculation methods: 1. Enthalpy method 2. Gibbs energy minimisation $c_p^* = \frac{dL(T)}{dT} + c_p$ 3. Modified specific heat method •Stoichiometric compounds $G_m - H_m^{SER} = a + bT + cT \ln T + \sum_{n=1}^{n} d_n T^n$ Latent heat prediction $\Delta G = \Delta G^{0} + \Delta G_{min}^{ideal} + \Delta G_{min}^{xs}$ •Solution phases Phase diagram prediction $\Delta G = \sum_{i} x_i \Delta G_i^0 + RT \sum_{i} x_i \log_e x_i$ Ideal solution model Physical property prediction $\Delta G = \sum_{i} x_i \Delta G_i^0 + RT \sum_{i} x_i \log_e x_i + \sum_{i} \sum_{i>i} x_i x_j \sum_{v} \Omega_{ij}^v (x_i - x_j)$ •Nonideal solution model Solute partition prediction

CHANGES ON THERMO-PHYSICAL PROPERTIES

ChemApp

- Library of programmable subroutines to perform phase equilibrium calculation.
- Based on improved equilibrium routines of ChemSage, same data- file format and same comprehensive library of models for non-ideal solution phases.
- Can be programmed in FORTRAN, C, C++, Visual Basic® or Delphi®.
- Great flexibility to design and implement thermodynamic calculation techniques due to its modularity.
- To initialise and obtain results three simple programming stages are necessary:
 - 1. Initialise interface, read a thermodynamic data-file and adjust the chemical system.
 - 2. Set initial conditions for the equilibrium calculation, defining:

Streams.

Global conditions.

3. Perform the calculation and collect results.

CHANGES ON THERMO-PHYSICAL PROPERTIES

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Scheil- Gulliver solidification model

• No solute diffusion in solid phase and complete diffusion in liquid phase.

SENSITIVITY ANALYSIS

Analysed alloys: for the geometry wedge

- 1.1201
- 1.6740
- AISI430
- AISI304
- Microalloyed steel
- DP500
- AZ91E
- MRI207S (Mg- Zn- Zr- Nd- Y- Gd)
- Al Si Alloys

Sand casting simulations

Changing GE, RO, LA 5%, 10%, 15%, 20%

SENSITIVITY ANALYSIS

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Solidification time increment %

The full line of FEM Simulation

- C % variations can alter pretty the latent heat of solidification within the composition range for a microalloyed steel.
- According to IDS cooling rate variations do not change thermophysical properties at liquidus temperature, ChemApp demostrates that it is not true.
- When C, Cr and Ni % and casting simulation input properties vary, solidification times increment.
- Latent heat release augmented 20% respect the original increments 25% solidification time.

CONCLUSIONS

- Density and specific heat values increment solidification time, but as latent heat release except for stainless steels. Increments on thermal conductivity reduce solidification time.
- Two programs created from ChemApp programmed subroutines to achieve a coupling of calculated thermo- physical properties with WinCast.
- Calculation accuracy improved since four different latent heat releasing and density- cp modes can be computed.
- Availing ChemApp subroutines phase diagrams, solid and liquid fractions, phase names, phase composition, specific heat capacities or remaining liquid fraction's liquidus and solidus temperatures can be achieved.

REAL CASTINGS

RWP GmbH | Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

The real castings are carried out during the IDEA project. Here some investment castings.

AISI304orig.prj/F_default

Solidification calculation

```
Mg= 0.30
Alloy composition in weight %: Si= 7.00 Al= 92.70
 - The liquidus temperature is
                                       615.39 °C
 - The solidus temperature is
                                       567.66 °C
 - The eutectic temperature is
                                       557.43 °C
 - The nominal fusion temperature is
                                       858.21 °C
n° of phases: 11
Equilibrium latent heat= 454.55 J/g
Temperature= 570.84 °C
                            Specific heat(cp)= 1.155 J/gC
Latent heat=
              38.81 J/g
                  LIQUID: 7.70 %
                                       Si= 12.81 % Al= 85.71 % Mg= 1.48 %
Phase 1:
 - The liquidus temperature is
                                  570.84 °C
 - The solidus temperature is
                                  557.43 °C
Phase 2:
              DIAMOND_A4: 4.72 %
                                       Si=100.00 %
                                                     A1= 0.00 %
                                                                  Mg= 0.00 %
Phase 3:
                  FCC_A1: 87.58 %
                                       Si= 1.48 %
                                                     Al= 98.31 %
                                                                  Mg =
                                                                       0.21 %
Phase 4:
              ALMG GAMMA:
                          0.00 %
                                       Si= 0.00 %
                                                         0.00 %
                                                                  Mg =
                                                                       0.00 %
                                                    À1 =
Phase 5:
                  HCP A3:
                           0.00 %
                                       Si= 0.00 %
                                                    Al= 0.00 %
                                                                  Mq =
                                                                       0.00 %
Phase 6:
               Mg_hcp_a3: 0.00 %
                                       Si= 0.00 %
                                                    Al= 0.00 %
                                                                  Mg =
                                                                       0.00 %
Phase 7:
               Al_fcc_a1: 0.00 %
                                       Si= 0.00 %
                                                    A1= 0.00 %
                                                                  Mg =
                                                                       0.00 %
            Al3OMg23_eps:
Phase 8:
                          0.00 %
                                       Si= 0.00 %
                                                    Al= 0.00 %
                                                                  Mg =
                                                                       0.00 %
                                                                  Mg= 0.00 %
Phase 9:
          Al140Mg89_beta: 0.00 %
                                       Si= 0.00 %
                                                    A1= 0.00 %
Phase10:
           Si_diamond_a4: 0.00 %
                                       Si= 0.00 %
                                                     Al= 0.00 %
                                                                  Mq =
                                                                       0.00 %
Phase11:
                   Mg2Si: 0.00 %
                                       Si= 0.00 %
                                                    Al= 0.00 %
                                                                  Mg= 0.00 %
```


WinCast

16 40	38.14	628.39	435.60
435.60	0.0	00	
445.80	0.0	21	
458.84	0.0	22	
471.88	0.0	23	
484.93	0.0	25	
497.97	0.0	27	
511.01	0.0	29	
524.05	0.0	31	
537.09	0.0	34	
550.14	0.0	38	
563.18	0.0	43	
576.22	0.0	58	
589.26	0.0	86	
602.30	0.1	44	
615.34	0.3	09	
628.39	1.0	00	
Laten	ce Waerme	438.14(J	J∕cm3)
Stoff		<mga12.2< td=""><td>2Si1></td></mga12.2<>	2Si1>
Quelle	9	ChemApp	calculation

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

- Latent heat release: GE
- Density x Cp: RO

RWP GmbH | Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Results and discussion

Casting technology	Mould material	Initial mould temp. [°C]	
Sand casting	Sand	25	
Investement casting	Mullit	280	
Gravity die casting	1.2343 steel	340	
High pressure die casting	1.2343 steel	400	

	Mg%	AI%	Si%
AlSi7Mg0.3	0.3	92.7	7
AIMg7Si0.1	7	92.9	0.1
MgAl2.2Si1	96.8	2.2	1
MgAl9.7Si0.3	90	9.7	0.3

- Feeder covered with *kal80* sleeve at initial temp.: 25°C
- Initial melt temperature: 700°C

RWP GmbH | Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Results and discussion

AIMg7Si0.1

RWP GmbH | Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Results and discussion

MgAl2.2Si1

HPDC new temp. Gradient about 27°C/s, actual about 8°C/s.

The full line of FEM Simulation

APPLICATION

RWP GmbH | Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Reference part "Pedal"

design for HPDC

design investment Casting

design for gravity die Casting

The full line of FEM Simulation

APPLICATION

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

grain size Gs

yield strength TYS

porosity P form factor of 0.8

tensile strength UTS

The full line of FEM Simulation

APPLICATION

RWP GmbH I Gesellschaft beratender Ingenieure für Berechnung und rechnergestützte Simulation mbH

Reference part "Pedal"

first trials

final test

X-ray test

The full line of FEM Simulation

www.rwp-simtec.de

- Diffusion conditions are known only for two of the four cooling velocities. Equations that can describe diffusion would be good to be available as input.
- Data- bases which content material and phase related thermodynamic data must be increased.
- Thermal conductivity values must also be computed to perform as accurate casting simulations as possible.

The full line of FEM Simulation