3-D Representation of Phase Diagrams and other Property Diagrams for Multi-component Systems

K. Hack¹, P. Cerfontaine², E. Fried², T. Kuhlen², D. Senk³, A. Babich³, S. Geimer³

¹GTT-Technologies
² VR Group RWTH Aachen University
³Institut für Eisenhüttenkunde RWTH

Where will 3-D representation help?

- From Gibbs energy to phase diagram
- Thermodynamic properties in ternaries, e.g. isothermal activities
- Liquidus projections
- Quaternary phase diagrams

Phase diagrams as projections from Gibbs Energy plots

Binary system: projection in G-T-x diagram, p = const.

Phase diagrams as projections from Gibbs energy plots

Ternary system: projection in $G-x_1-x_2$ diagram, T = const and p = const

Perspective Representation of Isothermal Activity Plots for the System Ti-Si-C

1: Si+SiC + TiSi₂ 2: TiSi₂ + SiC + Ti₃SiC₂ 3: SiC + Ti₃SiC₂ + TiC_{1-x} 4: SiC + TiC_{1-x} + C

5: $TiC_{1-x} + Ti_3SiC_2 + Ti_5Si_3C_x$ 6: $Ti_{BCC} + TiC_{1-x} + Ti_5Si_3C_x$ 7: $TiSi + Ti_5Si_4 + Ti_5Si_3C_x$ 8: $TiSi + TiSi_2 + Ti_5Si_3C_x$

Carbon activity in system Ti-Si-C for T = 1200° C

GTT-Technologies

Silicon activity in system Ti-Si-C for $T = 1200^{\circ}$ C

Liquidus Projection for the System MgO-Al2O3-SiO2

Quaternary Phase Diagrams

Wire Models

Wire model for the system Al-Li-Si

(R.Schmid-Fetzer, TU-Clausthal)

GTT-Technologies

Wire model for the system Co-Fe-Mo-Ni, T=1373K

Intermediate Summary

The <u>routine</u> 3D-visualisation of phase diagrams and also property diagrams would contribute considerably to the understanding of multidimensional relationships in material systems.

Isothermal isobaric isopleth sections

Liquidus projections

MgO - CaO - ZrO₂

Polythermal projection 2200 - 3500

Binary composition-temperature-pressure cube

The Pb-Sn T-P-x Phase Diagram left: from low to high pressure right: from high to low pressure

Ternary composition-temperature prism

Quaternary composition tetrahedron

4D: Quaternary composition tetrahedron with variable temperature

Summary

- Gibbs Energy thermodynamics (Software and Databases) permit quantitative calculation of systems with "arbitrarily" high number of components.

- Regarding time (animation) as an additional parameter it is even possible to generate *four dimensional* representations.

- Up-to-date graphics soft- and hardware provides tools for real 3D-representation.

Thank you for your attention !

We would be happy to welcome You in the 3D cave of RWTH computer center, Aachen !!!

Polarisation glasses will be made available.

