

9th Annual GTT-Technologies Workshop Herzogenrath, Germany June 20-22, 2007

Speciation and Migration of Radionuclides in the Near-Field of an Underground Waste Repository in Salt Rock

Helge C. Moog

What you are going to learn ...

- What is "safety analysis" about?
- How is thermodynamic modelling hooked in?
- Which data are needed?
- Applications
 - Some calculations of radionuclide solubility
 - Mobilization of radionuclides from vitrified waste
 - Diffusional transport in a clayey barrier
 - Reactive transport in geothermal fractured rock
 - Coupled CHM-behaviour of salt-based boreholesealings
- What's about future developments?

Disposal chamber for waste

Of course, a real underground structure of a disposal site is much more complex...

This is just ONE base of an underground disposal site

- Red = Barriers
 Green = solid salt
 Blue = crushed salt
 Black = Disposal cavern
 Grey = Excavation-disturbed zone
- Up to 15 bases possible

Application: Radionuclide solubility

Example: UO2

- Saturated NaCl-solution
- CO2-fugacity = 1 ... 0 bar
- Titration with NaOH

Solubility of U(IV) – different pCO2

Solubility of U(IV) – (some) species (pCO2 = 1 bar)

Application: Influence of radioactive decay

GRS

Example: Reaction $Am(IV) + Np(IV) \rightarrow Am(III) + Np(V)$

- 1 kg H2O
- 7 mol NaCl
- 1.2 mol N2
- AmO2: 1E-05 → 1E-15
- NpO2: 1E-15 → 1E-05

Application: Mobilisation of radionuclides from waste

Example: vitrified waste (R7T7)

	Element	Assumed Oxidationnumber	R7T7-glass [mol/kg]	spent fuel [mol/kg]
Matrix	Li	+1	1.34	1.4•10 ⁻⁴
	В	+3	4.11	1.5•10 ⁻⁵
	Na	+1	3.13	
	Ca	+2	0.73	2•1 0 ⁻⁴
	Si	+4	7.69	
	Al	+3	0.96	
	Fe	+3	0.34	
	Ni	+2	0.05	
	0		28.35	8.38
(modified by GRS)	-		27.10546	
Fission products	Sr	+2	0.032	0.006
	Se	+4		9•10 ⁻⁴
	I	±0		0.002
	Cs	+1		0.018
	Мо	+6	0.118	0.025
	Nd	+3	0.10	0.025
Actinides	U	+4	0.02	3.91
	Np	+4	3•10 ⁻⁵	0.04
	Pu	+4	0.009	0.045
	Am	+4	7 •10 ⁻⁴	0.007

Inventory in terms of elements

Boundary conditions

- 1 kg H2O
- Saturated with halite (NaCI) and anhydrite (CaSO4)
- "titrated" with R7T7

R7T7: release of actinides

Application: diffusion in a clayey barrier

Moog, H. C.; Keesmann, S. (2007): Modellierung des reaktiven Stofftransports im Nahfeld eines Endlagers, GRS-225, Abschlussbericht zu einem aus Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) geförderten Vorhaben, Fördernummer 02 E 9723, ISBN 978-3-931995-99-7, 179 Seiten.

Application: diffusion in a clayey barrier

Example:

Behälter: BSK3-Kokille		Transportstrecke			
Länge	[m]	4,90	Dicke der Tonschicht	[m]	40,5
Radius	[m]	0,43	Dichte des Tonsteins	[kg m ⁻³]	2500
Zwischenlagerzeit	[a]	50	Porosität	[]	0,12
Standzeit	[a]	500	Diffusionskoeffizient	[m ² s⁻¹]	8,3·10 ⁻¹¹
Eisenmenge des Behältermaterials	[mol]	4,387·10 ⁴	Randbedingung des Fernfeldes		
Mobilisierungsrate des Behältermaterials	[a⁻¹]	10 ⁻⁶	Volumenstrom im Aqu	uifer [m ³ a⁻¹]	10 ⁶

Development of U-inventory along the transportation path

Application: HTMC-coupled transport in fractured systems

Example: mixing of seawater with geothermal water

C.I.McDermott, Georg Kosakowski, Ralph Mettier, H. Moog, O. Kolditz (2007): Geomechanical facies concept and the application of hybrid numerical and analytical techniques for the description of htmc coupled transport in fractured systems, PROCEEDINGS, Thirty-Second Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 22-24, 2007, SGP-TR-183

Boundary conditions

		In situ		
Variable		Sea Water	Water	
Temperature °C		40	120	
pH		6.7	7.9	
Aqueous	Aq. Diff.	Moles	Moles	
Component	Coeff. m ² /s			
Н2О		55.56	55.56	
Na<+>	1.33E-09	4.85E-01	4.67E-02	
K<+>	1.96E-09	1.06E-02	2.62E-03	
Cl<->	2.03E-09	5.66E-01	5.01E-02	
Mg<2+>	7.06E-10	1.72E-02	9.62E-04	
Ca<2+>	7.92E-10	4.69E-02	5.05E-04	
(SO4)<2->	1.07E-09	2.81E-02	1.29E-03	
(HCO3)<->	1.00E-09	1.58E-03	5.05E-04	
Solid Phase				
Ca(SO4)_Anhydrite		0	1.999	
Ca(CO3)_Calcite		0.9247	1.002	
CaMg(CO3)2_Dolomite		1.038	0.9991	
Ca(SO4):2H2O_Gypsum		2.001	0	

Result

Application: Coupled CHM-behaviour in salt-based boreholesealings

Example: Reaction of anhydrous MgSO4 with sat. NaCl-solution

F. Werunsky, Z. Hou, H. C. Moog (2007): Coupled modelling of the C:HM behaviour of self healing salt based backfill.

M. Xie, H. C. Moog, W. Wang, H.-J. Herbert, H. Shao, O. Kolditz (2007): Reactive transport modelling in salt material based on Gibbs energy minimization.

Both in: The Mechanical Behaviour of Salt - Under-standing of THMC Processes in Salt, Proceedings of the 6th Confer-ence on the Mechanical Behavior of Salt 'SALTMECH6', Hannover, Germany, 22-25 May 2007, ISBN 13: 978-0-415-44398-2, Taylor & Francis, London, UK.

Formation of solids

Total volume

Result: 1.1 * 10⁴ sec

Perspectives

GRS

ems with up to

 Implementation of coupling between volumetric changes due to chemical reaction and HM-behaviour (applications in clay and in geothermal systems)

Steps to minimize computation time

A CORRECT

Modells for the calculation of activity coefficients

- Debye-Hückel (1923): purely electrostatic interactions
- Extensions to the DH-equation...
- Approaches considering specific ionic iteractions ...

