In der Helmholtz-Gemeinschaft



GTT-Technologies' Annual Workshop, Herzogenrath, Germany, June 20 - 22 2007

## **Thermochemical assessments**

## of alkali oxide - Al<sub>2</sub>O<sub>3</sub> - SiO<sub>2</sub> systems

E.Yazhenskikh, K. Hack\*, M. Mueller

Forschungszentrum Jülich, IEF-2, \*GTT-Technologies









## Contents

- ✓ Model and optimisation
- ✓ Application of a new data base for binary subsystems
- ✓ Application of a new data base for ternary subsystems
- $\checkmark$  Conclusions and outlook

## Associate species model

Liquid (slag), solid solutions, mullite

| <b>Binary liquid</b>                                                       |   | Congruent melting<br>compounds                  | Associate species          |
|----------------------------------------------------------------------------|---|-------------------------------------------------|----------------------------|
|                                                                            |   | Na <sub>4</sub> SiO <sub>4</sub>                | $Na_4SiO_4 \cdot 2/5$      |
|                                                                            |   | Na <sub>2</sub> SiO <sub>3</sub>                | $Na_2SiO3 \cdot 2/3$       |
| Pure liquid<br>oxide:<br>$Na_2O, K_2O,$<br>$Al_2O_3,$<br>$SiO_2 \cdot 2/5$ |   | Na <sub>2</sub> Si <sub>2</sub> O <sub>5</sub>  | Na2Si2O5 · 1/2             |
|                                                                            | + | K <sub>2</sub> SiO <sub>3</sub>                 | $K_2 SiO_3 \cdot 2/3$      |
|                                                                            |   | K <sub>2</sub> Si <sub>2</sub> O <sub>5</sub>   | $K_2Si_2O_5 \cdot 1/2$     |
|                                                                            |   | K2Si4O9                                         | $K_2 Si_4 O_9 \cdot 1/3$   |
|                                                                            |   | NaAlO <sub>2</sub>                              | NaAlO <sub>2</sub>         |
| 1                                                                          |   |                                                 | $Na_2Al_4O_7 \cdot 1/3$    |
|                                                                            |   | KAlO <sub>2</sub>                               | KAlO <sub>2</sub>          |
| Solution<br>components<br>(Spear et al.)                                   | • |                                                 | $Na_2Al_4O_7 \cdot 1/3$    |
|                                                                            |   | Al <sub>6</sub> Si <sub>2</sub> O <sub>13</sub> | $Al_6Si_2O_{13} \cdot 1/4$ |

Interaction parameters between species

+



Experimental data: phase diagram data, activity data (for binary systems)

Pure solid and liquid substances from the FACT database Some solution species from database of Spear et al.

## **Optimisation**

Adjustable parameters:  ${}^{298}_{f}$  and  $S^{298}$  for the liquid and solid solution species,  $\Delta H_{f}^{298}$  and  $S^{298}$  for the pure solid compounds (part.), interaction parameters between species

$$G_{m} = \sum x_{i}G_{i}^{0} + RT\sum x_{i}\ln x_{i} + \sum \sum_{i < j} x_{i}x_{j}\sum_{v} L_{ij}^{(v)}(x_{i} - x_{j})^{v}$$

$$L_{ij}^{(v)} = A_{ij}^{(v)} + B_{ij}^{(v)} \cdot T + C_{ij}^{(v)} \cdot T \cdot \ln T + D_{ij}^{(v)} \cdot T^{2} + \dots$$
New database



## Na<sub>2</sub>O-K<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system





## **New database for the Me<sub>2</sub>O-SiO<sub>2</sub> systems (Me=Na, K)**



## **DTA measurements in the Na<sub>2</sub>O-SiO<sub>2</sub> system**



## New database for the Me<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub> systems (Me=Na, K)





## Thermodynamic assessment of the Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system



**Four-sublattice model for mullite** 



K<sub>2</sub>O-Na<sub>2</sub>O-SiO<sub>2</sub> system: comparison of the calculated isotherms with the experimental points









## K<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system: comparison of the calculated equibria with the experimental points SiO<sub>2</sub>



20.06.07

In der Helmholtz-Gemeinschaft



# Solution species in the ternary liquid in the K<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system

| Interaction parameter between: |                        |  |  |  |
|--------------------------------|------------------------|--|--|--|
| Binary species                 | Ternary species        |  |  |  |
| $K_2Si_4O_9$                   | $KAlSi_2O_6 \cdot 1/2$ |  |  |  |
| $SiO_2 \cdot 1/2$              | $KAlSi_2O_6 \cdot 1/2$ |  |  |  |
| $K_2Si_2O_5$                   | $KAlSi_2O_6 \cdot 1/2$ |  |  |  |
| $Al_6Si_2O_{13} \cdot 1/4$     | $KAlSi_2O_6 \cdot 1/2$ |  |  |  |



In der Helmholtz-Gemeinschaft











SiO<sub>2</sub>

KAI

KAIS O

KA O

0.6 0.5 0.4 mass fraction

 $\mathbf{K}_{2}\mathbf{Al}_{12}\mathbf{O}_{19}^{0.1}$ 

Al<sub>3</sub>Si<sub>2</sub>O<sub>13</sub>

 $Al_2O_3$ 

KAl<sub>0</sub>O<sub>14</sub>

 $K_2Si_4O_9$ 

K<sub>2</sub>Si<sub>2</sub>O

0.9 0.8 0.7

mass percent SiO<sub>2</sub>/SiO<sub>2</sub>+KAlO<sub>2</sub>



mass percent SiO<sub>2</sub>/SiO<sub>2</sub>+KAlO<sub>2</sub>



mass percent KAlSi<sub>3</sub>O<sub>8</sub>/KAlSi<sub>3</sub>O<sub>8</sub>+K<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>





mass percent KAlSi<sub>2</sub>O<sub>6</sub>/KAlSi<sub>2</sub>O<sub>6</sub>+K<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>

 $K_2Si_2O_5(s3) + KAlSi_2O_6(s)$ 

Institut für Energieforschung, Werkstoffstruktur und Eigenschaften, (IEF-2)



## Current results: predicted phase equibria in the Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system



In der Helmholtz-Gemeinschaft

Current results: quasi-binary section NaAlO<sub>2</sub>-SiO<sub>2</sub>



SiO<sub>2</sub> Na<sub>6</sub>Si<sub>8</sub>O<sub>19</sub> Na,Si,O, NaAlSi Na<sub>2</sub>SiO<sub>2</sub> Na<sub>6</sub>Si<sub>2</sub>O<sub>7</sub> NaAlSiO<sub>4</sub> Na<sub>4</sub>SiO<sub>4</sub> Al<sub>6</sub>Si<sub>3</sub>O<sub>13</sub> Na<sub>2</sub>Al<sub>12</sub>O<sub>19</sub> **NaAlO** 0.6 0.5 0.4 0.3 0.2 0.1 mass fraction  $NaAl_9O_{14}$ Na<sub>2</sub>O 0.9 0.8 07 Al,0, **Solid solutions** Nepheline NaAlSiO4 (neph, s3)  $NaAlSi_2O_6$  (jadeite) Carnegieite  $NaAlSiO_4$  (carn, s4)  $NaAlSi_2O_6$  (jadeite)

In der Helmholtz-Gemeinschaft



### Conclusions

> The solution data for the binary systems  $Me_2O-SiO_2$ ,  $Me_2O-Al_2O_3$  (Me=Na, K) and  $Al_2O_3-SiO_2$  were improved to accurate description of the phase diagrams of the slag system

Solid and liquid solutions in the ternary systems Na<sub>2</sub>O-K<sub>2</sub>O-SiO<sub>2</sub>,

 $K_2O-Al_2O_3-SiO_2$  and  $Na_2O-Al_2O_3-SiO_2$  (partly) were described using the new database

## In the future:

≻Assessment the further solution parameters in the Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system

> Consideration of the oxide systems containing CaO and MgO

In der Helmholtz-Gemeinschaft



## Thank you for your attention

#### In der Helmholtz-Gemeinschaft

