Thermodynamic modeling of multicomponent salt sytems for Generation IV nuclear reactors

Alexander Pisch

SIMAP-LTPCM UMR 5614 (CNRS/INPG/UJF)

St Martin d'Heres - France

Now : Lafarge Centre de Recherche, St Quentin Fallavier, France

GTT workshop 22/06/2007

Molten salt nuclear reactors

- concept tested in the 60s (Oak Ridge)
- nuclear fuel dissolved in suited solvent (molten salt)
- U, Pu based fission reactor
- Th based breeding reactor

²³²Th + n -> ²³³Th -> ²³³Pa -> ²³³U (27d)

neutrons from adding small amounts of U and/or Pu

Fuel solvent conditions

- stable thermally
- resistant against radiation
- soluble for U, Pu, Th and higher actinides
- small neutron absorption cross section (breeder)
- low vapor pressure (safety)
- no reaction with the vessel material (Ni-based)
- cheap

regeneration (gaseous and solid fission products, liquid solution)

⁷LiF-BeF₂-ThF₄ + NaF, MgF₂, UF₄, PuF₃, LaF₃, CeF₃,...

Objectives

Establishment of a **Gibbs Energy database** of Th, Pu and U-based multicomponent salt systems in order to calculate

- Phase equilibria and phase diagrams
- Gibbs energy, enthalpy and heat capacity data
- Physical properties (density, viscosity, ...)

as a function of composition, temperature and pressure

Methodology

Thermodynamic modeling using the phenomenological Calphad approach based on experimental data and ab-initio calculations.

Thermodynamic models

- gas : ideal mixture of stoechiometric species
- solids : stoechiometric or substitutional solutions (Bragg-Williams)
- liquid : modified quasichemical model in the quadruplet approximation [Chartrand and Pelton 2001]

Two sublattice model for the molten salt

Basic structure : (anions)(cations,vacancies)

- Definition of anions and cations : quadruplets
- Coordination numbers
- Interaction Gibbs energy

GTT workshop 22/06/2007

Electrostatic repulsion/attractionFirst nearest neighbor
$$[Li-F]_{pair} + [Th-Cl]_{pair} \leftrightarrow [Li-Cl]_{pair} + [Th-F]_{pair}$$
 $\Delta g_1 < <0$ Polarisation:Second nearest neighbor $[Li-F-Li]_{pair} + [Th-F-Th]_{pair} \leftrightarrow 2 [Li-F-Th]_{pair}$ $\Delta g_2 < <0$

LiF – ThF₄ and MgF₂ – ThF₄

- Influence of MgF₂ addition (melting point ?)
- only phase diagram information (DTA)
- RAMAN spectroscopy LiF ThF₄ [1969Todt] :
 - complex formation in the liquid ThF_{8}^{4-} , ThF_{7}^{3-} et $Th_{2}F_{10}^{2-}$

Model for the liquid phase $(Li^+, Th^{4+}[8], Th^{4+}[7], Th_2^{8+}[10])(F^-, Va)$

Three different Gibbs energies for ThF₄ (end members of solution)
 Six interaction Gibbs energies

 $Th_2F_8 = 2 * G(ThF_4)$ SGTE substance database

 ThF_4 [7] = 12552+50.208*T + G(ThF_4)

 $ThF_{4}[8] = 25104 + 50.208 * T + G(THF_{4})$

Interaction : Li,Th₂//F , Li,Th[7]//F , Li,Th[8]//F, all others ideal

LiF - ThF₄

 $MgF_2 - ThF_4$

LiF-NaF-BeF₂

- only limited experimental data available
- BeF₂ tends to form polymer species (equivalent SiO₂)
 -> high viscosity in the liquid state
- MD calculations : dimer/trimer/polymer formation corner combination

 BeF_4^{2-} , $Be_2F_7^{3-}$, $Be_3F_{10}^{4-}$, polymers

modified quasichemical model for the liquid phase

(Li⁺, Be²⁺[4], Be₃⁶⁺[10])(F⁻,Va)

LiF - BeF₂

LiF-NaF-XF₃ (X=La, Ce et Pu)

Limited amout of experimental information

- phase diagram over the whole composition range
- enthalpy of mixing LiF LaF₃
- modeling of all binary systems
 - only excess enthalpy, no excess entropy
 - Neumann-Kopp+ constant for intermediate compounds
- ternary extrapolation (asymetrical)

GTT workshop 22/06/2007

Alexander Pisch

Conclusions and Perpectives

Thermodynamic modeling of ThF₄ base salt systems for reactor applications

- LiF-ThF₄ : variation of Th coordination and SRO
- LiF-MgF₂-ThF₄ : addition of MgF₂ does not significantly lower the melting T
- LiF-BeF₂ and NaF-BeF₂ : polymerisation and SRO
- LiF-NaF-BeF₂: NaF addition can lower BeF₂ content for given T
- LiF-NaF-XF₃ : identification of important ternary eutectics

Future work

- LiF-NaF-ThF₄ and LiF-BeF₂-ThF₄
- U-based binaries with LiF and NaF

Estimation of PuF₃ solubility in LiF-ThF₄ mixtures

- LiF-PuF₃ and LiF-ThF₄ from database
- PuF₃-ThF₄ no experimental information : assumed ideal
- Asymmetric (Toop) ternary extrapolation

Acknowledgements

This work has been supported by the French National CNRS-PCR network on molten salt nuclear reactors.

Financial support of the EC is acknowledged for a research stay at ITU

