A. Kaiser

RWTH Aachen University Department of Mineral Engineering Chair of Ceramics and Refractories

Thermochemical Calculations →

- ⇒ Prediction and analysis of corrosion processes
- Prevention of corrosion processes by selection of suitable materials under given process conditions
- ⇒ Definition of application limits for specific materials
- ⇒ Optimization of high temperature processes → reduction of corrosion processes by optimization of relevant process parameters

Ceramic Tool Materials for the Shaping of Semi Solid Alloys

> Thixoforming

- Forming of Metals in the Semi-Solid State (T_{Solidus} < T < T_{Liquidus})
- Alloy: Globulitic Solid Phase in a Low Melting Fluid Phase
- Thixotropic Flow Behaviour of Metal Alloy under Shear Stress during Forming
- Production of Complex Component Geometries with High Dimensional Accuracy Close to Final Dimensions

Requirements for Ceramic Tool Materials:

- High Thermal Stability (850 1500 °C)
- High Strength and Wear Resistance
- High Thermal Shock Resistance
- Poor Wettability by Molten Alloys
- Good Corrosion Resistance

Thermochemical Calculations

Corrosion Tests

Contact Corrosion

Melt Corrosion

Steel HS 6-5-2 Phase Composition as a Function of Temperature

Stahl HS 6-5-2 / 1330°C Phase Composition as a Function of Oxygen Partial Pressure

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C

CaO - ZrO,

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Phase Stabilities as a Function of Oxygen Partial Pressure

System Fe – $CaZrO_3 – O_2 / 1330$ °C

System Fe – CaZrO₃ – O₂ / 1330°C Composition of Oxide Melt

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Phase Reactions with the Alloying Elements of Steel HS 6-5-2

mass CaZrO₃/(CaZrO₃+W)

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Phase Reactions with the Alloying Elements of Steel HS 6-5-2

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Phase Reactions with the Alloying Elements of Steel HS 6-5-2

mole CaZrO₃/(V+CaZrO₃)

Contact Corrosion of $CaZrO_3$ – Steel HS 6-5-2 at 1330°C Phase Reactions as Function of Oxygen Partial Pressure

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Composition of Fe-Liquid

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C Composition of Oxide Melt

Contact Corrosion of $CaZrO_3$ – Steel HS 6-5-2 at 1330°C Phase Reactions between $CaZrO_3$ and the Oxide Scale of Steel HS 6-5-2

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C (2h / air)

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C (2h / air)

Area B1:

- dense microstructure
- pores formation in CaZrO₃ grains
- infiltration along the grain boundaries [1]
- dissolution of the CaZrO₃ grains [2] → enrichment of Ca + Zr in the infiltrating grain boundary phase [1]
- precipitation of ZrO₂ solid solution [3]

	[At%]	Са	Zr	Fe	W	V
1	infiltrating grain boundary phase	38.8	27.1	28.6	1.7	3.6
2	CaZrO ₃	50.0	43.1	5.2	1.7	-
3	ZrO ₂ -solid sol.	19.9	74.8	5.3	-	-

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C (2h / air)

Area B2:

- advanced decomposition of microstructure
- no CaZrO₃
- infiltration along grain boundaries [2]
- new phases formed by reaction of solved Ca with the alloying elements
 → CaMoO₄ (Powellite) –
 - CaWO₄ (Scheelite)-solid sol. [1]
- formation of ZrO₂ solid solutions
 [3]

	[At%]	Ca	Zr	Мо	Fe	W	V	Si
1	Ca(Mo,W)O ₄ – solid sol.	47.7	-	33.1	-	19.3	-	-
2	infiltrating grain boundary phase	36.4	21.6	-	30.1	-	5.2	6.8
3	ZrO ₂ -solid sol.	16.8	75.1	-	8.1	-	-	-

Contact Corrosion of CaZrO3 – Steel HS 6-5-2 at 1330°C (2h / air)

Area B3:

 porous oxide scale with ZrO₂grains [Zr] / no solid solution

- (Fe,Cr)-Oxide solid sol. [1]
- Formation of CaMoO₄ (Powellite) CaWO₄ (Scheelite) – FeWO₄ (Ferberite) solid solutions [2], [3]

	[At%]	Са	Zr	Мо	Fe	W	Cr
1	(Fe,Cr) ₂ O ₃		4.5	-	85.4	-	10.2
2	Ca(Mo,W)O ₄ – solid solution I	48.7	-	41.7		9.7	-
3	Ca(Mo,W)O ₄ – solid solution II	48.2	-	31.5	-	20.2	-

Contact Corrosion of $CaZrO_3$ – Steel HS 6-5-2 at 1330°C Phase Reactions as Function of Oxygen Partial Pressure

Contact Corrosion of CaZrO₃ – Steel HS 6-5-2 at 1330°C (Ar-5%H₂)

Melt Corrosion CaZrO₃ – Steel HS 6-5-2 1470 °C / Ar 4.6 / 1h

Area of Melt Surface

- dissolution of the ceramic material
- formation of a high porous layer
- formation of cracks

Corrosion Process:

- -Infiltration along Grain Boundaries
- -Dissolution of the Ceramic Material
- -CaO solution in the infiltrating Grain **Boundary Phase**
- -Precipitation of ZrO₂-Soild Solution
- -Pores- and Crack-Formation

Thermochemical Calculations Applied to High Temperature Corrosion of Ceramic and Refractory Materials

Slag - Ceramic

Zircon based Refractory Materials

Excellent Thermphysical Properties:

- low thermal expansion
- low thermal conductivity
- good corrosion resistance against glass melts, slags and liquid metal alloys

Applications as Refractory Materials:

- construction material in glass tanks, in iron and steel production, in energy technology
- moulds and cores in precision investment casting
- protective coatings of steel-moulding tools

 \rightarrow Extremely differing information concerning the thermal stability of ZrSiO₄ and the temperature and the kinetics of the solid state dissociation ZrSiO₄ \Leftrightarrow ZrO₂ + SiO₂

→ Substantial information for predicting service life and long-time behaviour of zircon based refractories

- temperature, reaction mechanism, kinetics of zircon-decomposition
- f(impurities, grain size, grainsize distribution, ...)

Literature Review : Thermal Decomposition of ZrSiO₄

ΔT_{diss.} = 517 K

Author	Year	Decomposition of ZrSiO ₄	Temperature
Washburn & Libman	1920	congruent melting	2550°C
Zhirnowa	1934	congruent melting	2430°C
Geller & Lang	1945	incongruent melting	1775°C
Curtis & Sowman	1953	solid state dissociation	1540°C
Toropov & Galakhov	1956	solid state dissociation	1540°C
Cocco & Schromek	1958	incongruent melting	1720°C
Rosén & Muan	1965	solid state dissociation	1600–1650 °C
Butterman & Foster	1967	solid state dissociation	1676°C
Jones, Kimura & Muan	1967	solid state dissociation	1675 ± 10 °C
Wecht	1972	solid state dissociation	1640 °C
Anseau, Biloque & Fierens	1976	solid state dissociation	>1525-1634°C
Fischer, Janke & Schulenburg	1976	solid state dissociation	1650-1680 °C
Klute & Woermann	1982	solid state dissociation	1681 ± 5 °C
Kanno	1989	solid state dissociation	1650-1700°C
Pavlik & Holland	2001	solid state dissociation	1258 °C
Levin	2001	solid state dissociation	1550 °C
O´Neill	2003	solid state dissociation	1667 °C

Literature Review : Phase Relationships in the System ZrO₂-SiO₂ - System

ΔT_{diss.} = 136 K

ZrSiO₄ Decomposition Mechanism - Single Crystal Experiments

1700 °C / 1h

Literature Review : Thermal Decomposition of ZrSiO₄

Author	Year	Decomposition of ZrSiO ₄	Temperature
Washburn & Libman	1920	congruent melting	2550°C
Zhirnowa	1934	congruent melting	2430°C
Geller & Lang	1945	incongruent melting	1775°C
Curtis & Sowman	1953	solid state dissociation	1540°C
Toropov & Galakhov	1956	solid state dissociation	1540°C
Cocco & Schromek	1958	incongruent melting	1720°C
Rosén & Muan	1965	solid state dissociation	1600–1650 °C
Butterman & Foster	1967	solid state dissociation	1676°C
Jones, Kimura & Muan	1967	solid state dissociation	1675 ± 10 °C
Wecht	1972	solid state dissociation	1640 °C
Anseau, Biloque & Fierens	1976	solid state dissociation	>1525-1634°C
Fischer, Janke & Schulenburg	1976	solid state dissociation	1650-1680 °C
Klute & Woermann	1982	solid state dissociation	1681 ± 5 °C
Kanno	1989	solid state dissociation	1650-1700°C
Pavlik & Holland	2001	solid state dissociation	1258 °C
Levin	2001	solid state dissociation	1550 °C
O'Neill	2003	solid state dissociation	1667 °C

T_{dissociation}= 1673°C ± 10°C

T_{eutectic}= 1687°C ± 10°C

Thermodynamic Data

$\Delta H^0_{f,oxides,298}$	$\Delta H_{f,elementes,298}^{0}$	S ⁰ f,oxides,298	Source
[kJ/mol]	[kJ/mol]	[J/K · mol]	
-2023.801		84.027	BAR89
$\textbf{-2400.0}\pm \textbf{20}$			O´NE01
$\textbf{-2034.2}\pm\textbf{3.1}$		84.026	ELL92
-2035.7		84.027	KNA91
$\textbf{-2035.098} \pm \textbf{8.4}$		84.5168	KUB79
		84.5168 ± 1.3	KUB67
-2023.956		83.87	CHA85
-2033.4		84.03	ROB78
-2022.1272		84.5168	MAT69
	-1917.54 ± 1.25		FER02
	-1918.47 ± 1.49		HOL98
	-2033.21 ± 1.1		MAN03
-2028.1412816		84.027272	FACTBASE FACT53BASE FToxidBASE

Calculated Phase Diagram ZrO₂-SiO₂

FactSage 5.5

New Dataset

Calculated Phase Diagram ZrO₂-SiO₂

Calculated Phase Diagram ZrO₂-SiO₂

T_{dissociation} = 1673°C ± 10°C

ZrO₂ - SiO₂

Impurites in natural zircon raw materials : rutile, illmenite, magnetite, quartz, corundum, kyanite, ...

 $\Delta T = 14K \rightarrow$ Degradation of eutectic temperature in the binary system below the solid state dissociation temperature even by minor impurities

 \rightarrow Solid state dissociation superimposed by formation of a silicate melt at temperatures noticeable below the dissociation temperature

Thermal Decomposition of Natural Zircon Raw Materials

Thermal Decomposition of Natural Zircon Raw Materials

Anseau, Biloque & Fierens (1976)

Thermal Decompositon of Natural Zircon Raw Materials ZrSiO₄-Powder G (U. C. Pucknat)

1600 °C / 16h / quenching

1650 °C / 16h / quenching

1700 °C / 5h / furnace cooled

Impurities Raw Material

Thermal Decomposition of Natural Zircon Raw Materials Mineral Impurities: Rutile, Ilmenite, Magnetite, Corundum, Quarz, Kyanite, ...

ZrSiO₄ - TiO₂

[1]: ZrO_2 – grain with 5.70 wt.-% TiO₂

Thermal Partial Oxidation Process for Fuel-Cell Anode Gas Synthesis

Advantages of Thermal Partial Oxidation:

- non-catalytical process (costs; toxicity)
- reforming of all liquid hydrocarbons (sulfur concentration, aromatics content)
- no external heat source
- educt conditioning: air, liquid hydrocarbons

S = Entschwefelung, V = Verdampfung, M = Mischen

Inert Porous Ceramic Structures for Thermal Partial Oxidation:

- flame stabilization at high temperatures
- self-igniton of the air/hydrocarbon mixture at the ceramic matric
- higher combustion rate
- lower process temperatures \rightarrow reduced NO_x
- lower noise emission

Thermal Partial Oxidation of Methane CH₄

 $CH_4 + \frac{1}{2}O_2 = 1 CO + 2 H_2$

 \rightarrow highly reducing atmospheres (+ carbon black formation at low temperatures)

 \rightarrow oxidizing atmospheres in case of start-up and shut-down procedures

→ temperatures up to 1500°C

Thermal Partial Oxidation of Light Fuel Oil

	[Vol%]	COS [ppmV]	H ₂ S [ppmV]		[µg/kg]
	λ=0.45, 1200 °C, 1bar				
СО	23			В	100
H ₂	20			Pb	50
H ₂ O	3			Na	100
CO ₂	1.3			CI	500
N ₂	52.7			Sn	50
				Са	110
10 ppm S		0.1	1.5	Fe	60
100 ppm S		1	15	Si	118
150 ppm S		1.5	22.5		
1000 ppm S		10	150		
2000 ppm S		20	300		

Combustion of Heavy Fuel Oil / Steam - Mixtures

Thermal Partial Oxidation of Light Fuel Oil 1000 ppm S

Materials Selection: Heat Capacity Ψ , Emissivity \uparrow , Thermal Shock Resistance \uparrow \rightarrow Thermal and Chemical Stability in Oxidizing, Reducing (Boudouard) and Syngas Atmospheres

Thermal Partial Oxidation of CH₄ – Stability of CaAl₂SiO₆

Thermal Partial Oxidation of CH₄ – Stability of SiC

G

Thermal Partial Oxidation of CH₄ – Stability of Si₃N₄

Thermal Partial Oxidation of Light Fuel Oil

Thermal Partial Oxidation of Light Fuel Oil – Stability of ZrTiO₄

Thermal Partial Oxidation of Light Fuel Oil – Stability of ZrTiO₄

Zr-Ti-C-O-N, 1200 °C

Thermal Partial Oxidation of Light Fuel Oil – Stability of MgTiO₃

Thermal Partial Oxidation of Light Fuel Oil

Thermal Partial Oxidation Process for Fuel-Cell Anode Gas Synthesis

