

Institut für Energieverfahrenstechnik und Chemieingenieurwesen

"Thermochemical modeling of the Combustion of Rheinland lignite coal" <u>Application of Simusage</u>

Dipl-.Ing. Muhammad Muhammadieh TU Bergakademie Freiberg I Institut für Energieverfahrenstechnik und Chemieingenieurwesen Reiche Zeche I 09596 Freiberg I Tel. +49(0)3731/39 4517 I Fax +49(0)3731/39 4555 E-Mail: Muhammad.Muhammadieh@iec.tu-freiberg.de I Web: www.tu-freiberg.de/~wwwiec/iec_new

- <u>Background</u>: Sulfate-rich deposition (fouling and sintering) during combustion of Rheinland lignite coal
- <u>Objective</u>: Develop models, that improve understanding of ash formation and deposition mechanisms in coal fired boiler on the basis of the research in project "SIMEX"
- Project Partners: RWE Power AG, Research Center Jülich, Applied University Zittau, TU Freiberg

Subjects:

- Interaction of S-, Na-, Ca-, Si- amount in the ash.
- > Effect of O_2 -level in the fuel gas on the deposition behavior.
- Influence of the included und excluded minerals.
- Reduce the deposition during mixed coal combustion.
- Thermodynamic investigation on the sulfate system (Na₂SO₄-K₂SO₄-CaSO₄-MgSO₄).

Schematic of a steam plant

Excluded and included minerales

biomass fuels

Different forms of a sh-forming matter in coals and biomass

Theoretical air requirement and excess air coefficient

Calculation table of o_{min} of solid and liquid fuels

column	1	2	3	
	Feed material	Combustion product	Oxygen demand	
			$\frac{m^{3}_{O_{2}}}{m^{2}}$	
row			kg _F	
1	С	CO ₂	1.867 · C	
2	Н	H ₂ O	5.600 · H	
3	S _c	SO ₂	0.700 · S	
4	0	-	- 0.700 · O	
			Sum: o _{min}	

$$I_{\text{min,dry}} = \frac{100}{21} \cdot o_{\text{min}} \qquad \frac{m^{3}_{A,dry}}{kg_{F}} \text{ or } \frac{m^{3}_{A,dry}}{m^{3}_{F}}$$

$$I_{\text{min,wet}} = I_{\text{min,dry}} + f_{W,A} \cdot 1.244 \cdot 10^{-3} \cdot I_{\text{min,dry}} \qquad \frac{m^{3}_{A,\text{wet}}}{kg_{F}} \text{ or } \frac{m^{3}_{A,\text{wet}}}{m^{3}_{F}}$$

$$I_{\text{dry}} = \lambda \cdot I_{\text{min,dry}} \qquad \frac{m^{3}_{A,\text{dry}}}{kg_{F}} \text{ or } \frac{m^{3}_{A,\text{dry}}}{m^{3}_{F}}$$

$$I_{\text{wet}} = \lambda \cdot I_{\text{min,wet}} \qquad \frac{m^{3}_{A,\text{wet}}}{kg_{F}} \text{ or } \frac{m^{3}_{A,\text{wet}}}{m^{3}_{F}}$$

[1]

[2]

[3]

[4]

The ultimate and proximate analyses

		Coal1	Coal2	Coal3	Coal4	Coal5	Coal6	Coal7
С	Ma%	26,0	25,0	32,5	33,0	31,4	29,6	30,16
Н	Ma%	1,9	1,9	2,4	2,5	2,4	2,1	2,32
N	Ma%	0,4	0,3	0,4	0,5	0,4	0,4	0,38
0	Ma%	10,6	10,8	13,0	12,4	13,1	12,4	13,19
Sc	Ma%	0,1	0,1	0,0	0,2	0,1	0,2	0,02
Aschegehalt	Ma%	2,8	1,7	1,7	2,2	3,3	7,1	5,03
W	Ma%	58,2	60,2	49,9	49,4	49,4	48,2	48,9
Summe	Ma%	100,0	100,0	100,0	100,0	100,0	100,0	100
Hu	kJ/kg	8359,0	8003,0	11081,0	11434,0	10643,0	9808,0	10109
Cfix	Ma%	16,9	15,6	21,9	20,0	18,8	19,8	18,36
Flüchtige	Ma%	22,1	22,5	26,5	28,5	28,6	24,9	27,71
CI	mg/kg	122	246	182	283	202	140	207
SiO ₂	Ma%	27,38	1,83	1,46	1,28	23,01	44,52	23,33
AI_2O_3	Ma%	2,30	7,23	1,74	1,55	4,18	19,21	7,23
Fe ₂ O ₃	Ma%	10,21	31,90	9,93	9,65	10,60	2,75	25,79
CaO	Ma%	36,90	29,68	38,29	37,16	29,60	13,60	20,89
MgO	Ma%	7,47	7,37	17,73	16,93	12,88	5,89	8,58
SO3	Ma%	13,52	19,52	19,52	24,36	12,88	9,01	9,93
Na ₂ O	Ma%	0,23	0,53	9,44	7,47	4,18	2,13	1,67
K₂0	Ma%	0,41	0,27	0,74	0,71	0,52	0,75	0,35
TiO ₂	Ma%	0,24	0,31	0,11	0,11	0,29	1,05	0,46
$(P_2O_5)_2$	Ma%	0,02	0,02	0,01	0,01	0,02	0,08	0,10
Trace element	Ma%	1,30	1,34	1,02	0,76	1,83	1,00	1,73
	Total	100,00	100,01	100,00	100,00	100,00	99,98	100,05

The ultimate and proximate analyses

IEC/

		Coal 4	Coal1 25 : Coal2 75	Coal1 50 : Coal2 50	Coal1 25 : Coal2 75	Coal1
С	Ma%	33,0	31,3	29,5	27,8	26,0
Н	Ma%	2,5	2,3	2,2	2,1	1,9
N	Ma%	0,5	0,4	0,4	0,4	0,4
0	Ma%	12,4	11,9	11,5	11,1	10,6
Sc	Ma%	0,2	0,2	0,1	0,1	0,1
Ash	Ma%	2,2	2,3	2,5	2,6	2,8
W	Ma%	49,4	51,6	53,8	56,0	58,2
Total	Ma%	100,0	100,0	100,0	100,0	100,0
Hu	kJ/kg	11434,0	10665,3	9896,5	9127,8	8359,0
Cfix	Ma%	20,0	19,2	18,4	17,6	16,9
Volatiles	Ma%	28,5	26,9	25,3	23,7	22,1
CI	mg/kg	283,0	242,8	202,5	162,3	122,0
SiO ₂	Ma%	1,3	9,2	16,0	22,0	27,4
Al ₂ O ₃	Ma%	1,6	1,8	2,0	2,2	2,3
Fe ₂ O ₃	Ma%	9,7	9,8	10,0	10,1	10,2
CaO	Ma%	37,2	37,1	37,0	37,0	36,9
MgO	Ma%	16,9	14,1	11,6	9,4	7,5
SO3	Ma%	24,4	21,1	18,2	15,7	13,5
Na ₂ O	Ma%	7,5	5,3	3,4	1,7	0,2
K₂0	Ma%	0,7	0,6	0,5	0,5	0,4
TiO ₂	Ma%	0,1	0,1	0,2	0,2	0,2
$(P_2O_5)_2$	Ma%	0,0	0,0	0,0	0,0	0,0
Trace element	Ma%	0,8	0,9	1,1	1,2	1,3

Solid-Slag diagram of condensed phase

Coal4

Coal1 :Coal4 (75:25)

Solid-Slag diagram of condensed phase

Coal1 :Coal4 (50:50)

Coal1 :Coal4 (25:75)

Solid-Slag diagram of condensed phase

Coal1

Coal4

Coal1 :Coal4 (75:25)

Coal1 :Coal4 (50:50)

Coal1 :Coal4 (25:75)

Na-distribution: Coal1 & Coal4 +

Coal1

Ca-distribution: Coal1 & Coal4

Coal4

Coal1 :Coal4 (25:75)

Ca-distribution: Coal1 & Coal4 +

Coal1 :Coal4 (50:50)

Coal1 :Coal4 (75:25)

Coal1

Si-distribution: Coal1 & Coal4

Coal1

Coal4

Si-distribution: Coal1 & Coal4

Coal1 :Coal4 (75:25)

Coal1 :Coal4 (50:50)

Coal1 :Coal4 (25:75)

- Ash deposition behavior has been simulated in consideration of the mixed coal combustion and O₂-level as well as the slow reaction rats of excluded minerals in the combustion atmosphere.
- Increasing the Coal1 fraction reduces the molten salt faction (reducing the fouling risk) due to the higher content of silicon in ash.
- Increasing the Coal2 fraction results in the formation of Ca-silicate (Melilite) and reduce the Na-Ca-sulfate fraction as well as lower combustion temperature.
- Most sodium is released as $NaOH_{(g)}$. $Na_2SO_{4(g)}$ and $NaCI_{(g)}$.
- Na₂SO₄(I) is formed between 1050-750 °C and it may induce the Fouling of ash on the furnace wall.
- The reactions of capture of gaseous Alkali can be summarized as follows :
- Gaseous alkali hydroxide NaOH(g) and alkali chloride NaCl(g) combine with SO₂ to from sulfates
- > Alkali chloride and sulfates directly condense during the gas cooling

Generic Model of temperature profiles in furnace with slag

Richard Bryers 1999

Monolayer model /ash deposition

