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Application of PESR with active slags at IME Aachen

active slag:

CaF2 + Ca-metal (+ CaO)

no Al2O3, SiO2, etc.
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Ternary CaF2-Ca-CaO system modelled with OptiSage
CaF2-Ca system:
Landolt-Börnstein (1993), 
Staffansson and Sichem (1992),
Zaitsev and Mogutnov (2001)

CaF2-CaO system:
Seo et al. (2004)

Ca-CaO system:
Zaitsev and Mogutnov (2001)

model:
sublattice type, Kohler/Toop



Partial pressure of Ca in equilibrium
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Fundamentals of the Ca evaporation
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→ thermochemical view: no system pressure dependency, if fCa = const.

→ kinetical view: dependency from system pressure and gas turbulence!
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Kinetic of the evaporation step

Hertz-Knudsen:
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Example:

αV = αK ≈ 1

pCa,G,G = 0 (Ca-transport in the gas phase is indefinitely fast)

T = 1973 K

→ j = 1130 mol/m²s and 16,8 mol/s in IME-PESR-furnace, respectively

→ The evaporation step would be nearly indefinitely fast.

→ The mass transport in the gas phase must be the limiting step.



Kinetic of the mass transport in the gas phase I

diffusion layer model (Fick‘s 1st Law):
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calc. of the diffusion coefficient (kin. gas theory + med. free length of path) :
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calc. of the diffusion layer thickness:
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Kinetic of the mass transport in the gas phase II
Example:

Tm = 100 °C

→ µArgon = 2,7x10-5 ... 2,8x10-5 Pa s (1 ... 50 bar)

→ νArgon = 2x10-5 ... 4,3x10-7 m²/s (1 ... 50 bar)
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Experimental examination

5 electrodes:

o material: St 37
o diameter: 100 mm 
o length: 1000 mm

slag system:

o 95 % CaF2-slag (Wacker 2052, > 97% CaF2, 1,2 % CaO)
o 5 % Ca-metal

shielding gas: Argon

pressure: +1, +3, +7, +15 and +40 bar (over pressure).

pressure increase during melting due to furnace temperature, 
blow off all 5 minutes

side experiment:

o temperature measurement with fibre optics and IR-pyrometer



Experimental examination - results



Experimental examination – evaluation I
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Experimental examination – evaluation II
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Summary and outlook
Summary

Instead of the evaporation step (Hertz-Knudsen), the mass transport 
in the gas phase is relevant for the Ca losses.
A kinetic model for calculation of the Ca losses was found using the 
similarity of heat and mass transfer:
Nu = f(Gr, Pr) → Sh = f(Gr‘, Sc).
Increased pressure has low influence on the Ca losses (3rd root).

Outlook
Isolation of the mould top increases the medium gas temperature and 
decreases convection and Ca losses,
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Summary and outlook
Summary

Instead of the evaporation step (Hertz-Knudsen), the mass transport 
in the gas phase is relevant for the Ca losses.
A kinetic model for calculation of the Ca losses was found using the 
similarity of heat and mass transfer:
Nu = f(Gr, Pr) → Sh = f(Gr‘, Sc).
Increased pressure has low influence on the Ca losses (3rd root).

Outlook
Isolation of the mould top increases the medium gas temperature and 
decreases convection and Ca losses,
Transfer of the model into other systems (Al-Mg, Al-Li, Ti-Al, ...).
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