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SimuSage is an innovative software tool for process simula-
tion and flowsheeting tasks. Based on ChemApp and its rig-
orous Gibbs energy minimizing technique, it provides a
library of components for the development of highly
customized process simulation models. The SimuSage con-
cept is described, and a number of examples from typical
application areas such as metallurgy, combustion technol-
ogy, and other industrial high-temperature processes invol-
ving inorganic chemistry are introduced.
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1. Introduction

In modeling high-temperature processes which involve
chemical systems for which a consistent thermochemical
description is available, one often tries to start with the
equilibrium approach. Using sophisticated software tools
like FactSage [1], which combine a large number of ther-
mochemical data with powerful calculation and reporting
tools, and assuming that due to the high reaction rates at
elevated temperatures the deviations from the equilibrium
state are small upon first approximation, such calculations
are quickly set up. But in many cases real processes repre-
sent a complex combination of several subprocesses, their
relationship can be modeled by flowsheets. SimuSage is a
tool to model complete flowsheets using the same rigorous
thermodynamic calculational methods found in FactSage.

Furthermore, processes frequently do not achieve com-
plete thermodynamic equilibrium. Rigorous kinetic model-
ing in such cases has been carried out regarding some as-
pects, but a complete representation is nearly impossible
due to the complexity of the task and the absence of reliable
kinetic data. Flowsheeting with SimuSage makes it possible
to create process models with an empirical component char-
acterized by a limited number of easily determined param-
eters, while still complying fully with the thermodynamic
restrictions.

The lack of programming tools that were deemed suita-
ble to model complex processes in this fashion prompted
SMS Demag AG, in co-operation with the former Mannes-
mann Datenverarbeitung GmbH and GTT-Technologies to
jointly develop a suitable software package. Even at a fairly
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early stage the Institut fiir Verfahrenstechnik at RWTH
Aachen University (IVT) successfully tested it in a number
of complex process simulation projects and developed in-
teresting new modeling concepts based on the new package.
This process simulation tool has subsequently been made
commercially available by GTT-Technologies as the soft-
ware package SimuSage.

2. Requirements and specifications

Although a large variety of software tools had already been
available at the time development of SimuSage started, no
single tool matched more than a few of the requirements as
determined by the developers. The catalog of requirements
for such a new software package included points listed be-
low.

2.1. Data availability

As mentioned above, one of the most crucial requirements
was that the entire range of state-of-the-art thermochemical
solution data had to be supported, without the need to sim-
plify or reduce the complexity and quality of the data. Parti-
cularly in the area of high-temperature, inorganic chemis-
try, all available data should be compatible with the new
tool. Fulfilling this requirement alone would mean a unique
feature for the newly developed process simulation soft-
ware.

2.2. Unlimited complexity of models

Essentially no limit should be imposed on the complexity of
the simulations that could be modeled. In particular it
should allow for iterative, nested and counter-current pro-
cesses, steady-state as well as dynamic simulations, and
support all types of flow control. This requires a type of
software technology used as a basis that not only makes
the design of complex simulations possible, but which also
does not put any unnecessary penalty on the execution time
of the resulting simulation.

2.3. Rapid application development

The assembly of simple processes should be as easy as pos-
sible, ideally requiring no programming at all, but only in-
teraction with a graphical user interface. At the same time,
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while the user experiences increased demands as to the
complexity of his or her simulations, the learning curve
should not be too steep to prevent a step-by-step learning
process of acquiring the necessary skills. This requirement
was considered to be crucial in order for the new software
to gain acceptance with engineers and scientists who are
not software developers by education, but who would use
it infrequently on a project-by-project basis instead of using
it as the main tool in their profession. Translated into soft-
ware engineering terms, this requirement would mean that
a Rapid Application Development (RAD) environment
would be necessary, which minimizes the amount of manu-
ally created code, and maximizes the use of existing com-
ponents and re-use of created components.

Even a flowsheeting simulation in its early stages should
have a user interface that makes it easy to demonstrate and
thus increases its acceptance with users not involved in the
development. In terms of the development times, it was ex-
pected that the RAD concept would need to make it possi-
ble to measure the development time of the first stages of a
flowsheeting simulation in days rather than weeks. This
would also make the tool essentially different from Chem-
App, which at that time had already been used to model a
multitude of processes. But as a pure programmer’s library,
ChemApp always requires the writing of code, and does not
explicitly support RAD concepts, nor does it provide user
interface elements to the application program.

2.4. Advanced programming techniques

At the same time, the program should be based on modern
software design concepts and thus satisfy the needs of users
who have a solid background in software engineering. This
more advanced group of users should also be able to extend
the existing software in a modular way, using their own ex-
pertise in modeling and simulation to create additional re-
usable components that integrate natively into the base sys-
tem as supplied by the manufacturer.

2.5. Meeting the needs of the primary target group

The primary target group of this new software tool would
be engineers and scientists who often use it infrequently
on a project by project basis. SimuSage originated from
the need to efficiently develop models for processes for
which established methods of calculation do not exist —
such as they do for example for distillation columns and
the various types of heat exchangers in the flowsheeting of
refineries. SimuSage thus concentrates on providing basic
unit operations from which other, more complex process
units can be built, which in turn can serve as building blocks
for larger process models. A positive effect of this philo-
sophy is that the user does not have to pay for the creation
and maintenance of software tools he is never likely to use
in his particular field of application.

2.6. Maximum support for user-defined code

The software should be as open as possible with respect to
adding user-defined code, irrespective of whether the code
is related to the simulation model, the communication of
the flowsheet code with other software, or the development
of a graphical user interface that is completely customiz-
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able to the users’ needs. This should in particular not be im-
peded by an inflexible interface between the program and
the user’s code, which limits the user in terms of the type
and complexity of custom code, or cause problems with re-
spect to the stability and error tolerance of the resulting
simulation.

2.7. Stand-alone executables of models for use by third
parties

Closely linked to the previous one is the requirement that
the software should meet the needs of process simulation
consultants. This not only means that the user should be
able to customize a flowsheeting simulation with respect
to the core simulation model as extensively as possible.
This requirement also implies that the user interface of the
resulting process simulation should be completely custom-
izable with the end users of the simulation in mind. Differ-
ent types of end users have different needs and expectations
in terms of the usability of software, ranging from a maxi-
mum ease of use, the shortest possible learning curve and
the best possible protection against incorrect user input on
one end, and maximum flexibility and adjustability of pro-
cess parameters on the other end. The new process model-
ing system should allow for the creation of a flowsheeting
simulation for both types of users, ideally from the same
code base. Another technical requirement for consultants
is that the resulting flowsheeting model can be packaged
in such a way that it can be passed on as a product to the
end user. An important aspect in this connection is that con-
sultants need to be able to choose how much of their poten-
tially proprietary simulation code is revealed or protected in
the final application.

3. The SimuSage process modeling concept

In reviewing the above requirements it became not only
clear that no readily available tool was a sufficiently good
match; the combination of requirements also implied that
it was unlikely that a monolithic, interactive process simu-
lation program would fulfill these goals. Rather, the soft-
ware would need to be implemented based on two existing
foundations:

e In terms of the necessary thermochemical calculations
at its core, it would be based on ChemApp [2]. This
would not only satisfy the expectations in terms of a
stable and fast Gibbs energy minimization engine, but
also guarantee that all thermochemical data available
in the form of databases for FactSage could be utilized.

e As for the software environment, it became clear that
due to the requirement that the resulting simulation
should provide a maximum amount of flexibility, modu-
larity, and extensibility, the solution would not be to de-
velop a static program with an interface allowing user-
defined code to be added, but in fact to implement a dif-
ferent paradigm: The integration of specialized process
simulation components into a state-of-the-art RAD soft-
ware environment.

The choice quickly fell on Borland Delphi®, not only be-

cause ChemApp had already been available for Delphi at

that time, but in particular because only a few software de-
velopment environments were available that fulfilled two
requirements which are quite opposed to each other: On
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the one hand it should provide an environment that is not
only easy to learn, but also suitable for users for whom pro-
gramming is more an infrequent task rather than a daily oc-
cupation. On the other hand, the development environment
would need to be a state-of-the-art system that also satisfies
the requirements of professional software engineers by sup-
porting all aspects of modern programming by design, not
just by extension.

3.1. Object-oriented design

SimuSage was implemented as a ChemApp-based, object
oriented, extensible class library of both visual and non-vi-
sual components for Borland Delphi.

Although SimuSage is based on ChemApp, it uses a dif-
ferent programming paradigm. While ChemApp was devel-
oped in FORTRAN at a time when object oriented software
development was a technology still in its infancy and rarely
used outside university institutes, SimuSage is completely
object oriented by design. Only this type of implementation
allows for the maximum flexibility and extensibility as ex-
perienced by the user, beyond what the SimuSage devel-
opers can foresee.

The SimuSage component library presents itself visually
as a list of items on a separate tab on the tool palette in Del-
phi (see Fig. 1). While these visual components are the im-
mediate and most common view of how SimuSage presents
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itself as a tool to the developer, it is only the “tip of the ice-
berg” in terms of the tools it provides. This design concept
is fundamental to object oriented programming, it imple-
ments the software building blocks as classes which consist
of properties (i.e. something an object has or is) and meth-
ods (i.e. something an object can do). Early on in the devel-
opment it became clear that this concept is eminently com-
patible with the application area of process engineering
and flowsheeting, where the concept of unit operations and
the material streams that are used to link them can be
thought of easily as a set of components that are classes
with a variety of properties and methods.

This concept of encapsulation is one of the core concepts
of object oriented software design. Other core concepts
which are also highly relevant to SimuSage are inheritance
and polymorphism. Inheritance allows both the developers
of SimuSage as well as its users to add to its library without
“reinventing the wheel” for every new class. To take advan-
tage of this, one simply picks an existing, suitable class as a
base, automatically inherits all its properties and methods,
and only adds new features or changes existing ones. With-
in the SimuSage component library, the relationship be-
tween streams and input streams is a suitable example.
While streams connect unit operations and take care of the
transfer of matter between them, a special type of stream is
required to model the material input to a flowsheet. Here,
a stream needs to be additionally associated with an input
material (e.g. air, steel scrap, or lime) in order to model
the supply of user-defined material to the process. These in-
put streams are very much like regular streams with a few
added properties (e. g. the name of the material with whom
they are associated) and methods (e.g. for reading the
user-defined composition of this material from a file).

The third important core concept of object oriented soft-
ware design used in SimuSage, polymorphism, is simpler
to understand than its name implies. If, for instance, a user
develops his or her own unit operation by inheriting from
an existing unit operation, polymorphism makes sure that
the code in SimuSage that will process the flowsheet when
the simulation is executed knows what to do with it, despite
the fact that this new custom unit operation is completely
unknown to the original developers of SimuSage. While
SimuSage was designed and implemented as an object
oriented component library, it should be emphasized that
this does not mean a new user of SimuSage needs to have
previous experience in object oriented programming. On
the contrary, for most users of SimuSage this is the first
contact with object oriented programming. For simple pro-
cess simulations, users barely come in contact at all with
the underlying object oriented programming principles. On
the other hand, demands to increase the complexity of their
process simulations will lead them quickly to appreciate
how much potential lies even in the modest use of object
oriented programming techniques.

3.2. Visual and non-visual components

A typical unit operation in SimuSage, and at the same time
the most basic and important one, is the equilibrium reactor.
As an object, it has a visual representation on the flowsheet,
that allows for an interaction both with the programmer
during the development stage, but also with the end user at
run time, since its visual representation will automatically
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be a part of the user interface of the resulting program. At
the same time, a visual component such as an equilibrium
reactor consists of properties (e.g. its temperature) as well
as methods (e. g. the capability to calculate its equilibrium).
This object oriented concept is not only implemented for all
visual components that have a graphical representation on
the flowsheet, but also for non-visual components. Typical
representatives of non-visual components are, for instance,
phases. While a phase (e.g. a liquid phase or a stoichio-
metric compound) usually does not need to have a visual re-
presentation on the flowsheet, it still has properties (e.g. an
amount, or phase constituents, which in turn are other ob-
jects) and methods (e.g. a procedure to copy the contents
from another phase).

3.3. The component library

The relationship between a phase and a phase constituent,
where both are implemented as classes and the former in-
cludes the latter, or the relationship between a stream and
an input stream, hints at the fact that SimuSage contains an
entire hierarchical tree of classes which form a library of
components. Important classes are the unit operations and
streams, but much of the versatility of SimuSage comes
from the non-visual classes.

3.3.1. Unit operations

For a process simulation tool to be useful in high-tempera-
ture inorganic chemistry, for instance in metallurgy or com-
bustion engineering, it does not need to provide an exhaus-
tive list of unit operations such as distillation columns,
fabric filters, or pumps. Key is the reliable operation of
basic units such as an equilibrium reactor that can handle
complex chemical systems with a large number of mixture
phases, combined with the ability of the basic unit opera-
tions to be extended and customized. Most processes in this
application area can be assembled from a limited amount of
these basic unit operations. Some of the basic unit opera-
tions available in SimuSage include the following:

o Equilibrium reactors in SimuSage may be operated at
constant temperature, constant volume, or a fixed en-
thalpy difference. They support the concept of stream
states, which allows phases or phase constituents easily
to be excluded from the equilibrium calculation on an
as-needed basis. After an equilibrium reactor has been
calculated in the flowsheet sequence, its equilibrium
state is copied to its outgoing stream.

e Mixers are available in several modifications to com-
bine two or more streams into one.

e Splitters can split a stream according to phases, or ac-
cording to fractions which can be independently speci-
fied down to the level of phase constituents.

e Heat exchangers are used to heat or cool a stream by
defining either a temperature or an enthalpy difference.

e QOutput units constitute the logical end of a flowsheet.
Each flowsheet has one or more output units, which
serve as a starting point for the calculation of the flow-
sheet (see also Section 3.4 below).

e Iterators are used to implement user-defined, iterative
changes to a flowsheet, or help manage closed loops,
which can occur when recycle streams or counter-cur-
rent processes are modeled.
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o User-defined unit operations are “empty shells”, i.e.
the user needs to provide code that processes the in-
going streams. They provide a way to create individual,
customized unit operations without the need to use the
concept of inheritance.

3.3.2. Streams

Streams represent the flow of material from one unit opera-
tion to another, and consist of one or more phases. They are
very closely related to the concept of streams in ChemApp,
but in SimuSage their object oriented implementation
provides added possibilities. The same is valid for the im-
plementation of phases, phase constituents, and system
components. Each phase consists of one or more phase con-
stituents. The composition and stoichiometry of phase con-
stituents is expressed using system components.

In addition to the regular stream types, which all consist
of phases and their constituents that are physically present
in the associated thermochemical data-file, SimuSage sup-
ports a separate stream type for condensed fuel streams.
The exact compounds of which a specific fuel consists, i.e.
the fuel analysis in terms of phases and constituents, are in
reality often not known. In contrast, a fuel stream is defined
in terms of its chemical composition for instance by speci-
fying its moisture content, the short analysis (ash, volatiles,
fixed carbon), the elementary analysis (C, H, N, O — ash
free, S), the ash analysis, and its calorific value. Such fuel
streams cannot be directly mixed with regular streams, but
can be fed together with regular streams into a reactor.

3.3.3. Non-visual classes

Other important, but non-visual classes include for instance
phases and phase constituents, system components, stream
types and stream states. These non-visual classes, just like
the visual classes too, can be accessed as objects in the
user’s code. They can be declared, created, copied, manipu-
lated, and destroyed much like any other dynamic data type
in Delphi.

3.4. Calculational model

Every unit operation has a method named process which
performs the calculation of the unit operation on the basis
of the ingoing streams’ values (composition, temperature,
pressure, enthalpy), and determines these values for the out-
going stream(s).

Every stream carries a property which is assigned either
the status calculated or not calculated. If, for instance, the
supplied amount of a material associated with an input
stream is changed by the user, this information of the
change is propagated “downstream” through the flowsheet
to all the streams and units connected directly and indirectly
to the input stream. Thus the status of all streams affected
by this change will be set to not calculated.

A flowsheet is calculated by calling the method process
of the flowsheet’s output unit. The method process is called
recursively for all preceding unit operations located up-
stream whose outgoing streams do not yet have the status
calculated. The method process first updates all of the in-
going streams of a unit, then calls its own method calculate
to perform the main calculational part of a unit operation,

949

Basic



Basic

S. Petersen et al.: SimuSage — the component library for rapid process modeling and its applications

and finally changes the status of its outgoing streams to cal-
culated.

Calling the process method of a particular unit operation
enables the selective recalculation of only parts of the flow-
sheet.

A simple flowsheet that only consists of unit operations
and streams must not contain any cycles and needs to be
fully defined. It is considered to be fully defined if all unit
operations are joined suitably with streams, i.e. if every
stream has a source and a destination unit, every input
stream a destination unit, and all units a path to an output
unit. If a more complex flowsheet contains closed cycles,
as is for instance the case when processes with recycle
streams or counter-current multi-reactor processes are mod-
eled, iterators are used. Several types of iterators are avail-
able to break closed loops and allow for a custom control
of input streams and flow conditions.

3.5. User interface elements

The SimuSage system is completed by a variety of compo-
nents and visual interface elements that handle the commu-
nication with the user, both at design time and at run time.
This includes report editors to display contents and proper-
ties of unit operations and streams, material editors to de-
fine the composition of materials associated with input
streams, stream state editors to change the status of phases
and phase constituents in reactors, input fields to associate
values such as temperature, pressure, or amounts with input
streams or unit operations, etc.

A central user interface element is the Inspector, a visual
component that supports the user in checking, both at de-
sign time and run time, whether a flowsheet contains a
number of typical errors such as unconnected streams or un-
defined essential properties.

3.6. Advanced techniques

Simple flowsheets (i.e. those which do not depend on user-
defined unit operations, internal closed loops, or custom
output) can be set up very quickly even by users new to
SimuSage and without the need to write any code by drag-
ging-and-dropping the necessary unit operations and
streams onto the flowsheet and setting their properties inter-
actively through Delphi’s dialogs. On the other hand, utiliz-
ing advanced techniques provided by SimuSage as well as
Delphi allows for the creation of highly sophisticated and
customized simulations.

Even without developing user-defined unit operations,
SimuSage allows for the customization of the behavior of
standard unit operations by using events. In event-based
programming the user can typically influence the flow of a
program not only by user interaction (mouse clicks or key-
strokes), but the program can provide custom events for
which the user can write code (event handlers) that is trig-
gered whenever the event occurs. As an example, every unit
operation provides a number of events, one of those is
named OnBeforeCalculation and occurs immediately be-
fore the method calculate of a unit is executed, another
called OnCalculated occurs immediately afterwards. By
writing an event handler that reacts to these events, the user
can for instance customize the behavior of an existing unit
operation, or update a display of results once it has been cal-
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culated. Other than deriving new unit operations from exist-
ing ones by inheritance, which has already been mentioned
above, SimuSage also allows for the grouping of compo-
nents or parts of a network as a “macro”. This macro can
be reused in other places of the flowsheet, thus reducing
the development time necessary to set up complex networks
that consist of multiple occurrences of similar parts.

Once a user becomes familiar with programming in Del-
phi, SimuSage components and flowsheets can be ex-
tended, modified, and augmented in almost limitless vari-
ety. This also relates to the way the finished simulation
displays results, or how a flowsheet presents itself in terms
of its user interface to the end user.

One of the features of SimuSage which cannot be matched
by any conventional process simulation program is the abil-
ity to handle every object it provides in a completely dy-
namic fashion. All SimuSage components, including visual
components such as unit operations and streams, can be cre-
ated, destroyed, and manipulated through the user code. This
enables the developer to add code which not only changes
the properties of components, but the assembly of the entire
flowsheet at run time. For instance, unit operations can be
dynamically created and removed on demand, and streams
can be redirected to model a different material flow, irrespec-
tive of the initial layout at design time.

4. A simple example

A simple example is meant to illustrate the use of
SimuSage. Figure 2 shows a process sketch of a thermal
waste treatment process. Sewage sludge is incinerated in a
fluidized-bed furnace, for which additional fuel plus the
supply of air is necessary. Most of the ash fraction leaves
the furnace through the grate, while some of it is carried
over as fly ash with the exhaust gas, where it is separated
in a hot gas cyclone. The flue gas leaving the cyclone still
contains a small fraction of dust filter ash. The process
sketch shows the temperatures of the furnace and the cy-
clone, plus the amounts of input materials.

hot gas
fluidised bed cyclone dﬂue: ?Ia::,
furnace l_’ ust filter
ash
LBTO °C 820 °C
fuel:
14 kg h”
sewage sludge: Tale
10k R cyclone
-— ash
air
bed ash 505 Nm® b

Fig. 2. Process sketch of a simple thermal waste treatment process
(Nm” indicates normal cubic meters)

flue gas,
bed ash dust filter
ash
fuel cyclone
sewage sludge ash

air
Fig. 3. Process model based on SimuSage components

Int. J. Mat. Res. (formerly Z. Metallkd.) 98 (2007) 10



S. Petersen et al.: SimuSage — the component library for rapid process modeling and its applications

& Unitl pas

Flowsshont | G consthasnis | Haavy metals |
I
ot it ||4|
fuerice | Falue fued —
4
etk |1 I |- -
iasts = L_—'! Imj ! = | | | Exle )
orderwidtho — -—— L I T
e e | (e m{ =t i o | || o —
fokor [ ETEE el baclo ‘”"I.[\i -
FrithuakieEcll | T |0‘!3 . -] - . .
e e R m s [1a] TPbGtBotance F_lg. 4. The SimuSage model during the de-
InoorcCentn True | Bl et ] obsesacn sign stage
IncludeALRT alse H
ks s False | _Ir" S I p [
aremoslmpelae [—° i e
abefau =
Litimtode Inude2 M7= ik Ig] o T——
Longhiame | Furnace
Masfieursid 1000 @ Thbpleters
cupputsiredall_escept_Sp
Farentiokr | True TPbiecyclelter...
st T =
Pt ParedCont air4 TPbinStreamat. ..
Ficture (lmw e
Fressus | 1013 = @ TRBUOUNE
Fresare | N/
Froportionalalse El TRUCUDUALIR
Rernpnk O e T Ny
ot [Fite sgc»mkaumiu
Stemiabel [T 4
QM&MH’J‘I‘I‘ =| -~ Rl
[ strerems Zrenm [ a2z 1 feet Moty T Code \Deagn (Hstory | P ﬁ TPlLoger =

For the model, a thermochemical data-file for the 18-
component system Pb-Hg-Cd-As—Zn—Cu—-Ni—Fe—
Cr-Ca-Cl-S-Si—-Na-O-N-C-H is extracted from
FactSage. The chemical system contains a gas phase with
almost 200 constituents, 210 pure compounds, and 26 non-
ideal condensed solution phases such as slag, molten salts,
and spinel phases.

Based on this data-file, input materials are set up with a
dedicated materials editor tool. For both the sewage sludge
as well as the fuel an elemental analysis is available that
permits these input materials to be defined based on the sys-
tem components. Air, on the other hand, is defined as a mix-
ture of the gas phase constituents O, and N5.

The next step is the conceptual “translation” of the pro-
cess sketch into a model using SimuSage components,
Fig. 3 shows the initial approach. Two equilibrium reactors
are used for the furnace and the cyclone, plus two splitters
separating the gas from the condensed phases.

Based on this sketch a SimuSage model can set up. Fig-
ure 4 shows a screenshot of Delphi’s integrated develop-
ment environment taken during the design stage of the
model.

An example of how user-defined Delphi code is used to
modify the standard behavior of SimuSage components
can be seen when looking at the source code of the model.
Through an input field on the flowsheet the end user can
specify global split factors for each of the two splitters. This
split factor is normally applied to all phases in the stream
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Fig. 5. Sample results of the model —
tals

mass ratios of selected heavy me-
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entering the splitter. In this particular model, the splitters
should apply this factor only to the condensed phases, not
to the gas phase. The gas phase of each of the streams enter-
ing the splitter is supposed to be directed in its entirety to
the streams labeled fly_ash and flue_gas, respectively.
As mentioned above, the concept of events provides the
mechanism to easily modify the standard behavior of com-
ponents. Taking the first splitter (Splitterl) as an exam-
ple, an event handler is defined for its OnBeforeCalcu-
lation event, which first reads the current value of the
split factor from the user input field (UIF_Splitl) and as-
signs it to the global split factor (property SplitFactor).
It then uses the splitter’s SplitFactorP property to set a
phase-specific split factor for the gas_ideal phase:

procedure TForml.SplitterlBeforeCalculation
(sender: TPbUnit) ;
begin

Splitterl.SplitFactor :=1.0-UIF Splitl.Flt;
Splitterl.SplitFactorP[’gas ideal’] :=1.0;
end;

Despite the simplicity of the model, several interesting re-
sults can already be gained. As an example, Fig. 5 shows
the calculated concentrations of several heavy metals in
comparison with measured values.

5. Applications of SimuSage

The first major application of SimuSage, at the time when it
was still under initial development as ProMoSys at SMS
Demag and used primarily at IVT, was the simulation of
an LD converter process [3—-6].

In this steelmaking process, pure oxygen is blown into a
molten iron bath for refining purposes. Elements dissolved
in the molten iron, most notably C, but also Si, Mn, P and
part of the iron are oxidized. This results in a slag phase
being formed which covers the hot metal. In the case of car-
bon, gas bubbles containing CO and CO; are formed. In this
well documented process, several reaction zones can be
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identified, which for modeling purposes leads to a division
of the entire converter into four basic sections. Each of
these sections was modeled based on an equilibrium reac-
tor, and all sections are connected by mass and energy
streams according to process conditions. The model was ex-
tended by taking into account such effects as stepwise sup-
ply of fluxes, energy losses through the converter mouth
due to radiation, radiation and convection losses through
the converter walls, etc. The results, such as the decarburi-
zation rate and the time-dependent amount of elements in
the melt were in good agreement with experimental results.
The overall excellent results and experiences in applying
this new process modeling tool to a non-equilibrium pro-
cess encouraged the initial developers to continue their
work and make it available to other users.

At the same institute, SimuSage was used together with
CFD (computational fluid dynamics) models to simulate a
biomass fired power plant [7, 8] and a cement plant [9,
10]. In high temperature processes such as cement making
and the combustion of biomass fuels, practical problems
arise from small amounts of minor components being intro-
duced into the plant via the raw materials. These compo-
nents tend to form volatile compounds that are transported
with the gas phase and form liquid melts when precipitating
in cooler regions of the plant. In these regions, dust or fly
ash particles, which are present in the gas phase as well,
will accumulate on the plant walls and form deposits. In
the case of cement making, these deposits will impede ma-
terial transport in the plant and cause holdups. In the case
of biomass combustion, deposits will reduce the heat trans-
fer at the heat exchanger pipes. As accounting for minor
component behavior within CFD calculations results in
very high computational costs, a combination of CFD and
thermochemical simulations was applied to model a cement
rotary kiln and a biomass fired grate furnace. In both cases,
a CFD calculation is carried out beforehand in order to
compute mass and energy transport taking only major
chemical reactions into account. From the results of these
calculations, SimuSage-based process models were derived
which enable the thermochemical conditions to be simu-
lated in greater detail, including the behavior of minor com-
ponents.

At the Chair of Energy Process Engineering and Thermal
Waste Treatment, Technische Universitit Bergakademie
Freiberg, Germany, SimuSage has been used for a number
of projects from the area of power generation involving
combustion and gasification processes. Coal-based com-
bined gas and steam cycles allow for the use of coal in
power generation at high efficiencies, in particular when
pressurized pulverized coal combustion (PPCC) is em-
ployed. Hot pressurized flue gas is directly expanded in a
gas turbine without prior cooling to exploit the full potential
of the high turbine inlet temperatures of modern gas tur-
bines. This necessitates the effective removal of ash parti-
cles and corrosive alkali and heavy metals which might
otherwise damage the turbine blades. Since the retention of
alkali metals in the coal ash is not sufficient, alkali removal
using getter materials (e. g. alumosilicates) can be employed
to achieve the required limits. To investigate the PPCC pro-
cess, and especially the potential of an alkali and heavy met-
al removal using getter materials designed to reduce the risk
of sulfate-induced high temperature corrosion, a complex
SimuSage-based process model was developed [11, 12].
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The condensation of trace elements such as sodium and
potassium is also an important concern in the BGL (British
Gas — Lurgi) gasification process. The SimuSage model de-
veloped consists of several equilibrium stages describing
the gasifier zones as well as the slag bath, and permits the
simulation of the capture of the volatile ash components
by calculating their capture rates and concentrations in the
raw gas [13].

Furthermore, at the same institute, SimuSage was used
within the framework of the SIMEX project, whose goal
was the development of models in order to improve the un-
derstanding of ash formation and deposition mechanisms in
coal fired boilers. A model for the combustion process was
developed which permits the calculation of ash formation
in different combustion atmospheres (reducing and oxidiz-
ing) depending on the temperature profile in the steam plant
[14]. In order to analyze the slagging behavior of different
types of Rheinland lignite coal, a SimuSage model was de-
veloped in which the steam plant is treated as a network of
interlinked equilibrium stages [15]. Through linking the
various isothermal equilibrium reactors and through the
systematic use of bypass streams, non-equilibrium phenom-
ena, which are for instance caused by incomplete mixing or
kinetic inhibitions, could be modeled successfully. The pro-
cess model allows for the estimation of the slagging and de-
position behavior for the range of coal types considered.

At Sasol Technology, South Africa, and the University of
Leoben, Austria, SimuSage is currently being used to mod-
el two industrial processes [16]. Indirect liquefaction of
coal to produce low emission synthetic fuel has gained a
lot of prominence globally, with rising oil prices and uncer-
tainties regarding crude oil supply. One of the critical tech-
nologies that are employed in coal-to-liquids processes is
coal gasification. In the gasification process used by Sasol,
coal is converted to synthesis gas using steam and oxygen
under pressure. SimuSage is used to model the complex
chemistry of this process, looking at issues such as gasifica-
tion, pyrolysis, combustion, and slagging. In order to model
the cement clinker production process, the University of
Leoben is using SimuSage as a tool to identify conditions
of chemical wear of the refractory lining especially in the
rotary kiln. Preliminary results with simple models show
the suitability of SimuSage for such complex process lay-
outs. Currently a total process model with the ability of con-
sidering reaction kinetics is being developed.

The reduction of carbon dioxide emissions is a major
challenge in the energy sector. The requirement to meet
the European targets for CO, reduction from power plants
fired by fossil fuels has led to the consideration of CO, se-
questration, because the increase of efficiency of power
plants has a limited impact on the total CO, production.
Among others, oxyfuel processes are promising power
plant concepts which would allow easy CO, removal from
the exhaust products. In the OXYCOAL-AC process, de-
veloped by RWTH Aachen University, the flue gas is fil-
tered, recirculated, and enriched in oxygen by passing
through a ceramic high temperature oxygen membrane. At
the Institute of Energy Research, Research Centre Jiilich,
Germany, SimuSage is being used to develop a thermo-
chemical model to investigate various aspects of this pro-
cess [17], such as the chemical composition of flue gases,
ashes, and condensates in different parts of a future
OXYCOAL power plant in order to estimate the risks of
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high temperature corrosion, problems in ash filtration, and
fouling of the membrane.

At the same institute, SimuSage is also used in the devel-
opment of a model aimed at gaining a better understanding
of the transport phenomena occurring in metal halide lamps
[18]. Advanced metal halide lamps use discharge vessels
made of translucent polycrystalline alumina (PCA). The
arc tube contains a molten salt mixture which partially va-
porizes under operating conditions. During long-term op-
eration, corrosion occurs due to the interaction between
the wall material and the molten salt mixture. A Simu-
Sage-based model has been developed which is used to
model thermochemistry and transport issues between the
source side, where alumina is dissolved, and the sink side,
where it precipitates.

6. Conclusion

Although SimuSage has not yet been available as a com-
mercial product for long, it has already proven itself as a
tool that offers significant advantages over other process
simulation programs. The ability to combine rigorous, mul-
ti-component, multi-phase equilibrium thermochemistry
with a state-of-the-art integrated development environment
supporting rapid application development (RAD) and max-
imum extensibility due to its nature as a component library,
permits the development of process simulation code which
would otherwise be impossible, or at least unfeasible. The
concept of dividing a process into a finite number of local-
ized equilibrium reactors, linked by streams into a flow-
sheeting network, which is already considered the primary
modeling paradigm of applying ChemApp, is extended into
a highly versatile process simulation tool by the design of a
library of reusable and expandable components for use with
Borland Delphi. Due to the availability of high quality
thermochemical data from programs such as FactSage,
SimuSage permits the simulation of complex, industrial
processes that exhibit strong non-equilibrium and time-de-
pendent characteristics.
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